Find the cartesian and vector equation of the plane passing through the 
points A(2,5,-3),B(-2,-3.5) and C(5,3,-3).

 

 

 

 
 
 
 
 

Answers (1)

A:  we know that the general equation of the plane passing 
through three points\left ( x_{1} y_{1}z_{1}\right )\left ( x_{1} ,y_{1},z_{1}\right )\left ( x_{2}, y_{2},z_{2}\right )\left ( x_{3} ,y_{3},z_{3}\right )
\begin{vmatrix} x-x_{1}&y-y_{1} &z-z_{1} \\ x_{2}-x_{1}&y_{2}-y_{1} &z_{2}-z_{1} \\ x_{3}-x_{1}&y_{3}-y_{1} &z_{3}-z_{1} \end{vmatrix}= 0
Then the plane pasing through A\left ( 2,5,-3 \right )B\left ( -2,-3,5 \right ) and \: C\left ( 5,3,3 \right )
\begin{vmatrix} x-2 & y-5 & z+3\\ -2-2&-3-5 & 5+3\\ 5-2& 3-5 & -3+3 \end{vmatrix}= 0\Rightarrow \begin{vmatrix} x-2 & y-5 & z+3\\ -4&-8 & 8\\ 3& -2 & 0\end{vmatrix}= 0\Rightarrow \left ( x-2 \right )\left ( 0+16 \right )-\left ( y-5 \right )\left ( 0-24 \right )+\left ( z+3 \right )\left ( 8+24 \right )= 0\Rightarrow 16\left ( x-2 \right )+24\left ( y-5 \right )+32\left ( z+3 \right )= 0
\Rightarrow 8\left [ 2x-4+3y-15+4z+12 \right ]= 0
\Rightarrow 2x+3y+4z-7= 0
\Rightarrow 2x+3y+4z=7
This is the required cartesian equation of the plane.
Now,
The required plane passes through the point A\left ( 2,5,-3 \right )whose position vector is a= 2\hat{i} +5\hat{j}-3\hat{k} and is normal 
to the vector \vec{n} given by \vec{n}= \overrightarrow{AB}\times \overrightarrow{AC}
\therefore \overrightarrow{AB}= -2\hat{i}-3\hat{j}+5\hat{k}-\left ( 2\hat{i} +5\hat{j}-3\hat{k}\right )
\overrightarrow{AB}= -4\hat{i}-8\hat{j}+8\hat{k}+8\hat{k}
\overrightarrow{AC}= \left [ 5\hat{i}+3\hat{j}-3\hat{k} -\left ( 2\hat{i} +5\hat{j}-3\hat{k}\right )\right ]
        = 3\hat{i}-2\hat{j}
Now,
 \vec{n}= \overrightarrow{AB}\times \overrightarrow{AC}= \begin{vmatrix} \hat{i} & \hat{j} &\hat{k} \\ -4 & \ -8 &\8 \\ 3 & \-2 &\0 \end{vmatrix}
= 16\hat{i}-\left ( -24 \right )\grave{j}+\left ( 8+24 \right )\hat{k}
= 16\hat{i}+24\hat{j}+32\hat{k}
The vector equation of the plane is
\vec{r}\cdot \vec{n}= \vec{a}\cdot \vec{n}
\Rightarrow \vec{r}\left ( 16\hat{i}+24\hat{j}+32\hat{k} \right )= 56
\Rightarrow \vec{r}\left ( 2\hat{i}+3\hat{j}+4\hat{k} \right )= 7
this is the required vector equation
        
 

Latest Asked Questions

Most Viewed Questions

Related Chapters

Preparation Products

Knockout CUET (Physics, Chemistry and Mathematics)

Complete Study Material based on Class 12th Syllabus, 10000+ Question Bank, Unlimited Chapter-Wise and Subject-Wise Mock Tests, Study Improvement Plan.

₹ 7999/- ₹ 4999/-
Buy Now
Knockout CUET (Physics, Chemistry and Biology)

Complete Study Material based on Class 12th Syllabus, 10000+ Question Bank, Unlimited Chapter-Wise and Subject-Wise Mock Tests, Study Improvement Plan.

₹ 7999/- ₹ 4999/-
Buy Now
Knockout JEE Main (Six Month Subscription)

- AI Coach Study Modules, - Unlimited Mock Tests, - Expert Mentorship, - Study Improvement Plan.

₹ 9999/- ₹ 8499/-
Buy Now
Knockout JEE Main (Nine Month Subscription)

- AI Coach Study Modules, - Unlimited Mock Tests, - Expert Mentorship, - Study Improvement Plan.

₹ 13999/- ₹ 12499/-
Buy Now
Knockout NEET (Six Month Subscription)

- AI Coach Study Modules, - Unlimited Mock Tests, - Expert Mentorship, - Study Improvement Plan.

₹ 9999/- ₹ 8499/-
Buy Now
Boost your Preparation for JEE Main with our Foundation Course
 
Exams
Articles
Questions