Find the cartesian and vector equation of the plane passing through the 
points A(2,5,-3),B(-2,-3.5) and C(5,3,-3).

 

 

 

 
 
 
 
 

Answers (1)

A:  we know that the general equation of the plane passing 
through three points\left ( x_{1} y_{1}z_{1}\right )\left ( x_{1} ,y_{1},z_{1}\right )\left ( x_{2}, y_{2},z_{2}\right )\left ( x_{3} ,y_{3},z_{3}\right )
\begin{vmatrix} x-x_{1}&y-y_{1} &z-z_{1} \\ x_{2}-x_{1}&y_{2}-y_{1} &z_{2}-z_{1} \\ x_{3}-x_{1}&y_{3}-y_{1} &z_{3}-z_{1} \end{vmatrix}= 0
Then the plane pasing through A\left ( 2,5,-3 \right )B\left ( -2,-3,5 \right ) and \: C\left ( 5,3,3 \right )
\begin{vmatrix} x-2 & y-5 & z+3\\ -2-2&-3-5 & 5+3\\ 5-2& 3-5 & -3+3 \end{vmatrix}= 0\Rightarrow \begin{vmatrix} x-2 & y-5 & z+3\\ -4&-8 & 8\\ 3& -2 & 0\end{vmatrix}= 0\Rightarrow \left ( x-2 \right )\left ( 0+16 \right )-\left ( y-5 \right )\left ( 0-24 \right )+\left ( z+3 \right )\left ( 8+24 \right )= 0\Rightarrow 16\left ( x-2 \right )+24\left ( y-5 \right )+32\left ( z+3 \right )= 0
\Rightarrow 8\left [ 2x-4+3y-15+4z+12 \right ]= 0
\Rightarrow 2x+3y+4z-7= 0
\Rightarrow 2x+3y+4z=7
This is the required cartesian equation of the plane.
Now,
The required plane passes through the point A\left ( 2,5,-3 \right )whose position vector is a= 2\hat{i} +5\hat{j}-3\hat{k} and is normal 
to the vector \vec{n} given by \vec{n}= \overrightarrow{AB}\times \overrightarrow{AC}
\therefore \overrightarrow{AB}= -2\hat{i}-3\hat{j}+5\hat{k}-\left ( 2\hat{i} +5\hat{j}-3\hat{k}\right )
\overrightarrow{AB}= -4\hat{i}-8\hat{j}+8\hat{k}+8\hat{k}
\overrightarrow{AC}= \left [ 5\hat{i}+3\hat{j}-3\hat{k} -\left ( 2\hat{i} +5\hat{j}-3\hat{k}\right )\right ]
        = 3\hat{i}-2\hat{j}
Now,
 \vec{n}= \overrightarrow{AB}\times \overrightarrow{AC}= \begin{vmatrix} \hat{i} & \hat{j} &\hat{k} \\ -4 & \ -8 &\8 \\ 3 & \-2 &\0 \end{vmatrix}
= 16\hat{i}-\left ( -24 \right )\grave{j}+\left ( 8+24 \right )\hat{k}
= 16\hat{i}+24\hat{j}+32\hat{k}
The vector equation of the plane is
\vec{r}\cdot \vec{n}= \vec{a}\cdot \vec{n}
\Rightarrow \vec{r}\left ( 16\hat{i}+24\hat{j}+32\hat{k} \right )= 56
\Rightarrow \vec{r}\left ( 2\hat{i}+3\hat{j}+4\hat{k} \right )= 7
this is the required vector equation
        
 

Preparation Products

JEE Main Rank Booster 2021

This course will help student to be better prepared and study in the right direction for JEE Main..

₹ 13999/- ₹ 9999/-
Buy Now
Rank Booster NEET 2021

This course will help student to be better prepared and study in the right direction for NEET..

₹ 13999/- ₹ 9999/-
Buy Now
Knockout JEE Main April 2021 (Subscription)

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 4999/-
Buy Now
Knockout NEET May 2021

An exhaustive E-learning program for the complete preparation of NEET..

₹ 22999/- ₹ 14999/-
Buy Now
Knockout NEET May 2022

An exhaustive E-learning program for the complete preparation of NEET..

₹ 34999/- ₹ 24999/-
Buy Now
Exams
Articles
Questions