Find the cartesian and vector equation of the plane passing through the 
points A(2,5,-3),B(-2,-3.5) and C(5,3,-3).

 

 

 

 
 
 
 
 

Answers (1)

A:  we know that the general equation of the plane passing 
through three points\left ( x_{1} y_{1}z_{1}\right )\left ( x_{1} ,y_{1},z_{1}\right )\left ( x_{2}, y_{2},z_{2}\right )\left ( x_{3} ,y_{3},z_{3}\right )
\begin{vmatrix} x-x_{1}&y-y_{1} &z-z_{1} \\ x_{2}-x_{1}&y_{2}-y_{1} &z_{2}-z_{1} \\ x_{3}-x_{1}&y_{3}-y_{1} &z_{3}-z_{1} \end{vmatrix}= 0
Then the plane pasing through A\left ( 2,5,-3 \right )B\left ( -2,-3,5 \right ) and \: C\left ( 5,3,3 \right )
\begin{vmatrix} x-2 & y-5 & z+3\\ -2-2&-3-5 & 5+3\\ 5-2& 3-5 & -3+3 \end{vmatrix}= 0\Rightarrow \begin{vmatrix} x-2 & y-5 & z+3\\ -4&-8 & 8\\ 3& -2 & 0\end{vmatrix}= 0\Rightarrow \left ( x-2 \right )\left ( 0+16 \right )-\left ( y-5 \right )\left ( 0-24 \right )+\left ( z+3 \right )\left ( 8+24 \right )= 0\Rightarrow 16\left ( x-2 \right )+24\left ( y-5 \right )+32\left ( z+3 \right )= 0
\Rightarrow 8\left [ 2x-4+3y-15+4z+12 \right ]= 0
\Rightarrow 2x+3y+4z-7= 0
\Rightarrow 2x+3y+4z=7
This is the required cartesian equation of the plane.
Now,
The required plane passes through the point A\left ( 2,5,-3 \right )whose position vector is a= 2\hat{i} +5\hat{j}-3\hat{k} and is normal 
to the vector \vec{n} given by \vec{n}= \overrightarrow{AB}\times \overrightarrow{AC}
\therefore \overrightarrow{AB}= -2\hat{i}-3\hat{j}+5\hat{k}-\left ( 2\hat{i} +5\hat{j}-3\hat{k}\right )
\overrightarrow{AB}= -4\hat{i}-8\hat{j}+8\hat{k}+8\hat{k}
\overrightarrow{AC}= \left [ 5\hat{i}+3\hat{j}-3\hat{k} -\left ( 2\hat{i} +5\hat{j}-3\hat{k}\right )\right ]
        = 3\hat{i}-2\hat{j}
Now,
 \vec{n}= \overrightarrow{AB}\times \overrightarrow{AC}= \begin{vmatrix} \hat{i} & \hat{j} &\hat{k} \\ -4 & \ -8 &\8 \\ 3 & \-2 &\0 \end{vmatrix}
= 16\hat{i}-\left ( -24 \right )\grave{j}+\left ( 8+24 \right )\hat{k}
= 16\hat{i}+24\hat{j}+32\hat{k}
The vector equation of the plane is
\vec{r}\cdot \vec{n}= \vec{a}\cdot \vec{n}
\Rightarrow \vec{r}\left ( 16\hat{i}+24\hat{j}+32\hat{k} \right )= 56
\Rightarrow \vec{r}\left ( 2\hat{i}+3\hat{j}+4\hat{k} \right )= 7
this is the required vector equation
        
 

Most Viewed Questions

Preparation Products

Knockout NEET May 2024

Personalized AI Tutor and Adaptive Time Table, Self Study Material, Unlimited Mock Tests and Personalized Analysis Reports, 24x7 Doubt Chat Support,.

₹ 40000/-
Buy Now
Knockout NEET May 2025

Personalized AI Tutor and Adaptive Time Table, Self Study Material, Unlimited Mock Tests and Personalized Analysis Reports, 24x7 Doubt Chat Support,.

₹ 45000/-
Buy Now
NEET Foundation + Knockout NEET 2024

Personalized AI Tutor and Adaptive Time Table, Self Study Material, Unlimited Mock Tests and Personalized Analysis Reports, 24x7 Doubt Chat Support,.

₹ 54999/- ₹ 42499/-
Buy Now
NEET Foundation + Knockout NEET 2024 (Easy Installment)

Personalized AI Tutor and Adaptive Time Table, Self Study Material, Unlimited Mock Tests and Personalized Analysis Reports, 24x7 Doubt Chat Support,.

₹ 3999/-
Buy Now
NEET Foundation + Knockout NEET 2025 (Easy Installment)

Personalized AI Tutor and Adaptive Time Table, Self Study Material, Unlimited Mock Tests and Personalized Analysis Reports, 24x7 Doubt Chat Support,.

₹ 3999/-
Buy Now
Boost your Preparation for JEE Main with our Foundation Course
 
Exams
Articles
Questions