Find the differential of the function \cos^{-1}\left ( \sin 2x \right ) w.r.t.x.

 

 

 

 
 
 
 
 

Answers (1)

\frac{d}{dx}\left [ \cos^{-1}\left ( \sin 2x \right ) \right ]= -\frac{1}{\sqrt{1-\sin ^{2}2x}}\cdot 2\cos 2x= -\frac{2\cos 2x}{\sqrt{\cos ^{2}2x}}
                                       = \frac{-2\cos 2x}{\left | \cos 2x \right |}
\therefore \frac{d}{dx}\left [ \cos^{-1}\left ( \sin 2x \right ) \right ]= \frac{-2\cos 2x}{\cos 2x}= -2
                                              or  =   \frac{2\cos 2x}{-\cos 2x}= 2

Most Viewed Questions

Related Chapters

Preparation Products

Knockout CUET (Physics, Chemistry and Mathematics)

Complete Study Material based on Class 12th Syllabus, 10000+ Question Bank, Unlimited Chapter-Wise and Subject-Wise Mock Tests, Study Improvement Plan.

₹ 7999/- ₹ 4999/-
Buy Now
Knockout CUET (Physics, Chemistry and Biology)

Complete Study Material based on Class 12th Syllabus, 10000+ Question Bank, Unlimited Chapter-Wise and Subject-Wise Mock Tests, Study Improvement Plan.

₹ 7999/- ₹ 4999/-
Buy Now
Knockout JEE Main (Six Month Subscription)

- AI Coach Study Modules, - Unlimited Mock Tests, - Study Improvement Plan.

₹ 9999/- ₹ 8499/-
Buy Now
Knockout JEE Main (Nine Month Subscription)

- AI Coach Study Modules, - Unlimited Mock Tests, - Study Improvement Plan.

₹ 13999/- ₹ 12499/-
Buy Now
Knockout NEET (Six Month Subscription)

- AI Coach Study Modules, - Unlimited Mock Tests, - Study Improvement Plan.

₹ 9999/- ₹ 8499/-
Buy Now
Boost your Preparation for JEE Main with our Foundation Course
 
Exams
Articles
Questions