Find the differential of the function \cos^{-1}\left ( \sin 2x \right ) w.r.t.x.

 

 

 

 
 
 
 
 

Answers (1)

\frac{d}{dx}\left [ \cos^{-1}\left ( \sin 2x \right ) \right ]= -\frac{1}{\sqrt{1-\sin ^{2}2x}}\cdot 2\cos 2x= -\frac{2\cos 2x}{\sqrt{\cos ^{2}2x}}
                                       = \frac{-2\cos 2x}{\left | \cos 2x \right |}
\therefore \frac{d}{dx}\left [ \cos^{-1}\left ( \sin 2x \right ) \right ]= \frac{-2\cos 2x}{\cos 2x}= -2
                                              or  =   \frac{2\cos 2x}{-\cos 2x}= 2

Preparation Products

Knockout NEET July 2020

An exhaustive E-learning program for the complete preparation of NEET..

₹ 15999/- ₹ 6999/-
Buy Now
Rank Booster NEET 2020

This course will help student to be better prepared and study in the right direction for NEET..

₹ 9999/- ₹ 4999/-
Buy Now
Knockout JEE Main July 2020

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 12999/- ₹ 6999/-
Buy Now
Test Series NEET July 2020

Take chapter-wise, subject-wise and Complete syllabus mock tests and get in depth analysis of your test..

₹ 4999/- ₹ 2999/-
Buy Now
Knockout NEET May 2021

An exhaustive E-learning program for the complete preparation of NEET..

₹ 22999/- ₹ 11999/-
Buy Now
Exams
Articles
Questions