Find the equation of the normal to the curve x^2=4y which passes through the point \left ( -1,4 \right ).

 

 

 

 
 
 
 
 

Answers (1)

Suppose the normal at P(x_1,y_1) on the parabola x^2=4y passes through \left ( -1,4 \right )

\because P(x_1,y_1)\: \: lies \: \: on\: \: x^2=4y

\therefore {x_{1}}^{2}=4y_1\: \: \: \: -(i)

The equation of the curve is x^2=4y

Differentiative w.r.t x, we have 

2x=4\frac{\mathrm{d} y}{\mathrm{d} x}

\Rightarrow \frac{\mathrm{d} y}{\mathrm{d} x}=\frac{x}{2}\Rightarrow \left ( \frac{\mathrm{d} y}{\mathrm{d} x} \right )_{x_1,y_1}=\frac{x_1}{2}

The equation (x_1,y_1) of normal at P(x_1,y_1) is 

y-y_1=\frac{-1}{\frac{\mathrm{d} y}{\mathrm{d} x}}\left ( x-x_1 \right )

y-y_1=\frac{-2}{x_1}\left ( x-x_1 \right )\: \: \: \: \: -(ii)

\because It\: \: \: passes\: \: \: through\; \; (-1,4)

\therefore putting\: \: \: x=-1\: \: and\: \: y=4,we\: get

\Rightarrow 4-y_1=\frac{-2}{x_1}(-1-x_1)\Rightarrow 4-y_1=\frac{2}{x_1}(1+x_1)\Rightarrow 4-y_1=\frac{2}{x_1}(1+x_1)\Rightarrow 4x_1-x_1y_1=2+2x_1

\Rightarrow 2x_1=2+x_1y_1\Rightarrow \frac{2x_1-2}{x_1}=y_1\: \: \: \: (iii)

Eliminating y_1 from equation (i), we have

{x_{1}}^{2}=4\left ( \frac{2x_1-2}{x_1} \right )

{x_{1}}^{3}=8x_1-8\Rightarrow x_1=2

Putting x_1=2\: \: in\: \: (iii),we\: \: get\: \: \: y_1=1

Putting values of x_1,y_1, in (ii), we get

(y-1)=-1(x-2)

x+y-3=0

This is the required equation of normal to the given curve.  

 

Most Viewed Questions

Preparation Products

Knockout NEET May 2024

Personalized AI Tutor and Adaptive Time Table, Self Study Material, Unlimited Mock Tests and Personalized Analysis Reports, 24x7 Doubt Chat Support,.

₹ 40000/-
Buy Now
Knockout NEET May 2025

Personalized AI Tutor and Adaptive Time Table, Self Study Material, Unlimited Mock Tests and Personalized Analysis Reports, 24x7 Doubt Chat Support,.

₹ 45000/-
Buy Now
NEET Foundation + Knockout NEET 2024

Personalized AI Tutor and Adaptive Time Table, Self Study Material, Unlimited Mock Tests and Personalized Analysis Reports, 24x7 Doubt Chat Support,.

₹ 54999/- ₹ 42499/-
Buy Now
NEET Foundation + Knockout NEET 2024 (Easy Installment)

Personalized AI Tutor and Adaptive Time Table, Self Study Material, Unlimited Mock Tests and Personalized Analysis Reports, 24x7 Doubt Chat Support,.

₹ 3999/-
Buy Now
NEET Foundation + Knockout NEET 2025 (Easy Installment)

Personalized AI Tutor and Adaptive Time Table, Self Study Material, Unlimited Mock Tests and Personalized Analysis Reports, 24x7 Doubt Chat Support,.

₹ 3999/-
Buy Now
Boost your Preparation for JEE Main with our Foundation Course
 
Exams
Articles
Questions