Find the equation of the normal to the curve x^2=4y which passes through the point \left ( -1,4 \right ).

 

 

 

 
 
 
 
 

Answers (1)

Suppose the normal at P(x_1,y_1) on the parabola x^2=4y passes through \left ( -1,4 \right )

\because P(x_1,y_1)\: \: lies \: \: on\: \: x^2=4y

\therefore {x_{1}}^{2}=4y_1\: \: \: \: -(i)

The equation of the curve is x^2=4y

Differentiative w.r.t x, we have 

2x=4\frac{\mathrm{d} y}{\mathrm{d} x}

\Rightarrow \frac{\mathrm{d} y}{\mathrm{d} x}=\frac{x}{2}\Rightarrow \left ( \frac{\mathrm{d} y}{\mathrm{d} x} \right )_{x_1,y_1}=\frac{x_1}{2}

The equation (x_1,y_1) of normal at P(x_1,y_1) is 

y-y_1=\frac{-1}{\frac{\mathrm{d} y}{\mathrm{d} x}}\left ( x-x_1 \right )

y-y_1=\frac{-2}{x_1}\left ( x-x_1 \right )\: \: \: \: \: -(ii)

\because It\: \: \: passes\: \: \: through\; \; (-1,4)

\therefore putting\: \: \: x=-1\: \: and\: \: y=4,we\: get

\Rightarrow 4-y_1=\frac{-2}{x_1}(-1-x_1)\Rightarrow 4-y_1=\frac{2}{x_1}(1+x_1)\Rightarrow 4-y_1=\frac{2}{x_1}(1+x_1)\Rightarrow 4x_1-x_1y_1=2+2x_1

\Rightarrow 2x_1=2+x_1y_1\Rightarrow \frac{2x_1-2}{x_1}=y_1\: \: \: \: (iii)

Eliminating y_1 from equation (i), we have

{x_{1}}^{2}=4\left ( \frac{2x_1-2}{x_1} \right )

{x_{1}}^{3}=8x_1-8\Rightarrow x_1=2

Putting x_1=2\: \: in\: \: (iii),we\: \: get\: \: \: y_1=1

Putting values of x_1,y_1, in (ii), we get

(y-1)=-1(x-2)

x+y-3=0

This is the required equation of normal to the given curve.  

 

Preparation Products

JEE Main Rank Booster 2021

This course will help student to be better prepared and study in the right direction for JEE Main..

₹ 13999/- ₹ 9999/-
Buy Now
Rank Booster NEET 2021

This course will help student to be better prepared and study in the right direction for NEET..

₹ 13999/- ₹ 9999/-
Buy Now
Knockout JEE Main April 2021 (Subscription)

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 4999/-
Buy Now
Knockout NEET May 2021

An exhaustive E-learning program for the complete preparation of NEET..

₹ 22999/- ₹ 14999/-
Buy Now
Knockout NEET May 2022

An exhaustive E-learning program for the complete preparation of NEET..

₹ 34999/- ₹ 24999/-
Buy Now
Exams
Articles
Questions