Get Answers to all your Questions

header-bg qa

Find the equation of the plane containing two parallel lines \mathrm { \frac{x-1}{2} = \frac{y+1}{-1} = \frac{z}{3}} and \mathrm { \frac{x-2}{3} = \frac{y-1}{1} = \frac{z-2}{6}}. Also, find if the plane thus obtained contains the line \mathrm { \frac{x}{4} = \frac{y-2}{-2} = \frac{z+1}{6}} or not.

 

 

 

 
 
 
 
 

Answers (1)

Let \mathrm { L_1 : \ \frac{x-1}{2} = \frac{y+1}{-1} = \frac{z}{3}} and \mathrm { L_2: \frac{x}{4} = \frac{y-2}{-2} = \frac{z+1}{6}}.

The points in these lines are (1,-1,0) & (0,2,-1) repectively.

Let the d.r's of the normal to the required plane be A, B, C. So the equation of plane is.

\mathrm{A(x-1) + B(y+1) + C(z - 0) = 0\quad - (i)}

As (0,2,-1) lies on (i), so,    \mathrm{-A + 3B - C = 0\quad - (ii)}

Also as the plane contains the line so, the normal to the plane shall be \mathrm{\perp} to these lines also.

i.e \mathrm{2A -B +3 C = 0\quad - (iii)} (as d.r's of the line L1 are 2,-1,3)

Solving (ii) and (iii) we get: \mathrm{\frac{A}{8} = \frac{B}{1} = \frac{C}{-5}}

By (i), we have \mathrm{8(x-1) + 1(y+1) -5(z - 0) = 0}

    i.e    \mathrm{8x + y - 5z = 7}

Now let  \mathrm {L_3: \frac{x-2}{3} = \frac{y-1}{1} = \frac{z-2}{6}}. Clearly  the point on it is M(2,1,2) and its d.r's are 3,1,5

\becauseM satisfies the plane \mathrm{8x + y - 5z = 7} as

\mathrm{LHS : 8x + y - 5z = 8\times 2 + 1 - 5\times 2 = 7 = RHS}.

And \mathrm{8\times 3 + 1\times 1 - 5\times5 = 24 + - 25 = 0} i.e normal of the plane is \mathrm{\perp} to the line L3 also.

Hence, the plane \mathrm{8x + y - 5z = 7} contains the line L3.

Posted by

Ravindra Pindel

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads