Find the order and the degree of the differential equation  x^2\frac{\mathrm{d^2y} }{\mathrm{d} x^2}=\left \{ 1+\left ( \frac{\mathrm{d} y}{\mathrm{d} x} \right )^2 \right \}^4.

 

 

 

 

 
 
 
 
 

Answers (1)

x^2\frac{\mathrm{d^2}y }{\mathrm{d} x^2}=\left \{ 1+\left ( \frac{\mathrm{d} y}{\mathrm{d} x} \right )^2 \right \}^4

x^2\frac{\mathrm{d^2}y }{\mathrm{d} x^2}=\left [ 1+\left ( \frac{\mathrm{d} y}{\mathrm{d} x} \right )^2 \right ]^2 \times \left [ 1+\left ( \frac{\mathrm{d} y}{\mathrm{d} x} \right )^2 \right ]^2

x^2\frac{\mathrm{d^2}y }{\mathrm{d} x^2}=\left [ 1+2\left ( \frac{\mathrm{d} y}{\mathrm{d} x} \right )^2+\left ( \frac{\mathrm{d} y}{\mathrm{d} x} \right )^4 \right ] \cdot \left [ 1+2\left ( \frac{\mathrm{d} y}{\mathrm{d} x} \right )^2+\left ( \frac{\mathrm{d} y}{\mathrm{d} x} \right )^4 \right ]

\therefore  Highest order derivative =\frac{\mathrm{d^2}y }{\mathrm{d} x^2}

\Rightarrow Order=2

Degree of differential equation = degree of highest order derivative

Degree= 1

Preparation Products

JEE Main Rank Booster 2021

This course will help student to be better prepared and study in the right direction for JEE Main..

₹ 13999/- ₹ 9999/-
Buy Now
Rank Booster NEET 2021

This course will help student to be better prepared and study in the right direction for NEET..

₹ 13999/- ₹ 9999/-
Buy Now
Knockout JEE Main April 2021 (Subscription)

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 4999/-
Buy Now
Knockout NEET May 2021

An exhaustive E-learning program for the complete preparation of NEET..

₹ 22999/- ₹ 14999/-
Buy Now
Knockout NEET May 2022

An exhaustive E-learning program for the complete preparation of NEET..

₹ 34999/- ₹ 24999/-
Buy Now
Exams
Articles
Questions