Find the particular solution of the differential equation :
\left ( 1+e^{2x} \right )dy+\left ( 1+y^{2} \right )e^{x}dx= 0,  given that y\left ( 0 \right )= 1\cdot

 

 

 

 
 
 
 
 

Answers (1)

\left ( 1+e^{2x} \right )dy+\left ( 1+y^{2} \right )e^{x}dx= 0
\Rightarrow \int \frac{dy}{1+y^{2}}+\int \frac{e^{x}dx}{1+e^{2x}}= 0
put e^{x}= t\; \; \Rightarrow e^{x}dx= dt  in the second integral
\therefore \tan^{-1}y+\int \frac{dt}{1+t^{2}}= 0
\Rightarrow \tan^{-1}y+\tan^{-1}t= \tan^{-1}c
\Rightarrow \tan^{-1}y+\tan^{-1}e^{x}= \tan^{-1}c
given that y\left ( 0 \right )= 1,\tan^{-1}1+\tan^{-1}e^{0}= \tan^{-1}c
c= \tan \left ( \frac{\pi }{4}+\frac{\pi }{4} \right )= \tan \frac{\pi }{2}= \frac{1}{0}
\therefore The solution is \tan^{-1}y+\tan^{-1}e= \tan^{-1}\frac{1}{0}
ie \tan^{-1}\frac{y+e^{x}}{1-ye^{x}}= \tan^{-1}\frac{1}{0}
\Rightarrow \frac{y+e^{x}}{1-ye^{x}}= \frac{1}{0}            \therefore 1-ye^{x}= 0
\therefore y=e^{-x}  is the required solutions.
 

Preparation Products

NEET Foundation 2022

NEET Foundation 2022.

₹ 14999/-
Buy Now
Biology Foundation for Class 10

Biology Foundation for Class 10.

₹ 999/- ₹ 499/-
Buy Now
Knockout JEE Main April 2021 (One Month)

Personalized AI Tutor and Adaptive Time Table, Self Study Material, Weekend Live Classes, Mentorship from our Experts, Unlimited Mock Tests and Personalized Analysis Reports, 24x7 Doubt Chat Support,.

₹ 14000/- ₹ 6999/-
Buy Now
Knockout NEET May 2021 (One Month)

Personalized AI Tutor and Adaptive Time Table, Self Study Material, Weekend Live Classes, Mentorship from our Experts, Unlimited Mock Tests and Personalized Analysis Reports, 24x7 Doubt Chat Support,.

₹ 14000/- ₹ 6999/-
Buy Now
Knockout JEE Main May 2021

Personalized AI Tutor and Adaptive Time Table, Self Study Material, Weekend Live Classes, Mentorship from our Experts, Unlimited Mock Tests and Personalized Analysis Reports, 24x7 Doubt Chat Support,.

₹ 22999/- ₹ 14999/-
Buy Now
Boost your Preparation for JEE Main with our Foundation Course
 
Exams
Articles
Questions