Find the particular solution of the differential equation :
x\frac{dy}{dx}\sin \left ( \frac{y}{x} \right )+x-y\sin \left ( \frac{y}{x} \right )= 0,  given that y\left ( 1 \right )= \frac{\pi }{2}\cdot

 

 

 

 
 
 
 
 

Answers (1)

x\frac{dy}{dx}\, \sin \left ( \frac{y}{x} \right )+x-y\, \sin \left ( \frac{y}{x} \right )= 0
\Rightarrow \frac{dy}{dx}= \frac{y}{x}-\frac{1}{\sin \left ( \frac{y}{x} \right )}
put y= vx\Rightarrow \frac{dy}{dx}= v+\frac{xdv}{dx}
\therefore v+\frac{xdv}{dx}= v-\frac{1}{\sin v}
\Rightarrow -\int \sin vdv= \int \frac{dx}{x}
\Rightarrow\cos v= \log \left | x \right |+c
\Rightarrow\cos \frac{y}{x}= \log \left | x \right |+c
given that y\left ( 1 \right )= \frac{\pi }{2},\: \cos \frac{\pi }{2}= \log \left | 1 \right |+c
\Rightarrow c= 0
Hence the required solution is \cos \frac{y}{x}= \log \left | x \right |

Preparation Products

Knockout NEET July 2020

An exhaustive E-learning program for the complete preparation of NEET..

₹ 15999/- ₹ 6999/-
Buy Now
Rank Booster NEET 2020

This course will help student to be better prepared and study in the right direction for NEET..

₹ 9999/- ₹ 4999/-
Buy Now
Knockout JEE Main July 2020

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 12999/- ₹ 6999/-
Buy Now
Test Series NEET July 2020

Take chapter-wise, subject-wise and Complete syllabus mock tests and get in depth analysis of your test..

₹ 4999/- ₹ 2999/-
Buy Now
Knockout NEET May 2021

An exhaustive E-learning program for the complete preparation of NEET..

₹ 22999/- ₹ 11999/-
Buy Now
Exams
Articles
Questions