Get Answers to all your Questions

header-bg qa

find the position vector of the foot of perpendicular and the perpendicular distance from the point P with position vector 2\hat{i}+3\hat{j}+4\hat{k} to the plane \vec{r}\cdot \left ( 2\hat{i}+\hat{j}+3\hat{k} \right )-26= 0. Also find image of P in the plane.

 

 

 

 
 
 
 
 

Answers (1)

Let L be the foot of the foot of the perpendicular drawn from p\left ( 2\hat{i}+3\hat{j}+4\hat{k} \right ) on the plane \vec{r}\cdot \left ( 2\hat{i}+\hat{j}+3\hat{k} \right )-26= 0 we know that the position vector of the foot of perpendicular from the point P with position vector \vec{a} from the plane \vec{r}\cdot \vec{n}= d is given by

\overrightarrow{pn}= \frac{\left [ d-\left ( \vec{a}\cdot \vec{n} \right ) \right ]\vec{n}}{\left | \vec{n} \right |^{2}}
= \frac{\left [ 26-\left ( 2\hat{i} +3\hat{j}+4\hat{k}\right ) \left ( 2\hat{i} +\hat{j}+3\hat{k} \right )\right ]}{\left ( \sqrt{4+1+9} \right )^{2}} \left ( 2\hat{i} +\hat{j}+3\hat{k} \right )
= \frac{\left [ 26-\left ( 4+3+12 \right ) \right ]\left ( 2\hat{i}+\hat{j}+3\hat{k} \right )}{14}= \frac{7}{14}\left ( 2\hat{i}+\hat{j}+3\hat{k} \right )
= \hat{i}+\frac{1}{2}\hat{j}+\frac{3}{2}\hat{k} and the perpendicular distance is given by \frac{\left | \vec{a}\cdot \vec{n}-d \right |}{\left | \vec{n} \right |}
so required distance = \frac{\left | \left ( 2\hat{i}+3\hat{j}+4\hat{k} \right ) \left ( 2\hat{i}+\hat{j}+3\hat{k} \right )-26\right |}{\sqrt{14}}
                              = \frac{7}{\sqrt{14}}
Let Q be theimage of the point P\left ( 2\hat{i}+3\hat{j}+4\hat{k} \right ) to the plane \vec{r}\cdot \left ( 2\hat{i}+\hat{j}+3\hat{k} \right )-26= 0. then PQ is normal to the plane.
\therefore equation of line PQ is \vec{r}= \left ( 2\hat{i}+3\hat{j}+4\hat{k} \right )+\lambda \left ( 2\hat{i}+\hat{j}+3\hat{k} \right )
Since Q lies on line PQ so let the position vector of Q be \left ( 2\hat{i}+3\hat{j}+4\hat{k} \right )+\lambda \left ( 2\hat{i}+\hat{j}+3\hat{k} \right )= \left ( 2+2\lambda \right )\hat{i}+\left ( 3+\lambda \right )\hat{j}+\left ( 4+3\lambda \right )\hat{k}
Since, R is the mid point of PQ. therefore position vector of R is
\frac{\left [ \left ( 2+2\lambda \right )\hat{i}+\left ( 3+\lambda \right )\hat{j} +\left ( 4+3\lambda \right )\hat{k}\right ]+\left ( 2\hat{i}+3\hat{j}+4\hat{k} \right )}{2}
= \left ( 2+\lambda \right )\hat{i}+\left ( 3+\frac{\lambda }{2} \right )\hat{j}+\left ( 4+3\frac{\lambda }{2} \right )\hat{k}
since R lies on the plane \vec{r}\cdot \left [ 2\hat{i}+\hat{j}+3\hat{k} \right ]-26= 0
\therefore \left \{ \left ( 2+\lambda \right )\hat{i} +\left ( 3+\frac{\lambda }{2} \right )\hat{j}+\left ( 4+3\frac{\lambda }{2} \right )\hat{k}\right \}
                                                               \left ( 2\hat{i}+\hat{j} +3\hat{k}\right )-26= 0
= \left ( 4+2\lambda \right )+3+\frac{\lambda }{2}+1 2 +\frac{9\lambda }{2}- 26=0
\Rightarrow \lambda = \frac{7}{7}= 1
Thus the position vector of Q is 4\hat{i}+4\hat{j}+7\hat{k}

 

Posted by

Ravindra Pindel

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads