Get Answers to all your Questions

header-bg qa

Find the quadratic polynomial, sum and product of whose zeroes are –1 and – 20 respectively. Also find the zeroes of the polynomial so obtained.

 

 

 
 
 
 
 

Answers (1)

Given Sum of roots, \alpha +\beta = -1---(i)
           Product of roots, \alpha \beta = -20---(ii)
We know that in ax^{2}+bx+c= 0
\alpha +\beta = \frac{-b}{a}---(iii)
\alpha \beta = \frac{c}{a}---(iv)
\Rightarrow compare (i) & (ii) And (ii) and (iv)
\Rightarrow \frac{-b}{a}= -1\Rightarrow b= a
        \frac{c}{a}= -20\Rightarrow c= -20a
In polynomial ax^{2}+bx+c= 0, put values of b and c
\Rightarrow ax^{2}+ax-20a= 0
\Rightarrow x^{2}+x-20= 0
Now to obtain Zeroes of this equation apply Shri dharacharye's formula
\left ( \alpha ,\beta \right )= \frac{-b\pm \sqrt{b^{2}-4ac}}{2a}
\left ( \alpha ,\beta \right )= \frac{-1\pm \sqrt{1-4\times 1\times \left ( -20 \right )}}{2\times 1}
= \frac{-1\pm \sqrt{81}}{2}= \frac{-1\pm 9}{2}
\left ( \alpha ,\beta \right )= \left ( \frac{-1+9}{2},\frac{-1-9}{2} \right )
\left ( \alpha ,\beta \right )= \left ( 4,-5 \right )
 

Posted by

Safeer PP

View full answer