Get Answers to all your Questions

header-bg qa

Find the sum of first 24 terms of an A.P. whose nth term is given by  a_n=3+2n

 

Answers (1)

Given : a_n=3+2n

First term  (n=1)\Rightarrow a_1=3+2\times 1

                                   \Rightarrow a_1=5

Second term (n=2)\Rightarrow a_2=3+2\times 2

                                      \Rightarrow a_2=7

Third term (n=3)\Rightarrow a_3=3+2\times 3

                                   \Rightarrow a_3=9

Fourth term (n=4)\Rightarrow a_4=3+2\times 4

                                     \Rightarrow a_4=11

A.P : 5, 7, 9, 11, ...

Common difference  (d)=7-5=2

Sum of A.P 

=S_n=\frac{n}{2}[2\times a+(n-1)d]

For  n=24,

S_{24}=\frac{24}{2}[2\times 5+(24-1)\times 2]

        =\frac{24}{2}\times 2[5+23]=22\times 28

S_{24}=672

Posted by

Safeer PP

View full answer