Find the vector equation of the plane determined by the points A\left ( 3,-1,2 \right ),B\left ( 5,2,4 \right )\: and\: C\left ( -1,-1,6 \right ). Hence, find the distance of the plane, thus obtained, from the origin.

 

 

 

 
 
 
 
 

Answers (1)

Equation of plane determined by A\left ( 3,-1,2 \right )\: B\left ( 5,2,4 \right )\: and\: C\left ( -1,-1,6 \right ) is
\begin{vmatrix} x-3 &y+1 &x-2 \\ 5-3 &2+1 &4-2 \\ -1-3& -1+1 &6-2 \end{vmatrix}= 0
\Rightarrow \begin{vmatrix} x-3 &y+1 &x-2 \\ 2 &3 &2 \\ -4& 0 &4 \end{vmatrix}= 0
= 12\left ( x-3 \right )-16\left ( y+1 \right )+12\left ( z-2 \right )= 0
\Rightarrow 3x-4y+3z-19= 0
so vector eq is \vec{r}.\left ( \frac{ 3\hat{i} -4\hat{j}+3\hat{k}}{\sqrt{9+16+9}} \right )=\frac{19}{\sqrt{34}}\, i.e\, \vec{r}\cdot \left ( \frac{ 3\hat{i} -4\hat{j}+3\hat{k}}{\sqrt{34}} \right )= \frac{19}{\sqrt{34}}
\therefore  the distance of the plane (i) from origin is = \frac{19}{\sqrt{34}}

Preparation Products

Knockout NEET July 2020

An exhaustive E-learning program for the complete preparation of NEET..

₹ 15999/- ₹ 6999/-
Buy Now
Rank Booster NEET 2020

This course will help student to be better prepared and study in the right direction for NEET..

₹ 9999/- ₹ 4999/-
Buy Now
Knockout JEE Main July 2020

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 12999/- ₹ 6999/-
Buy Now
Test Series NEET July 2020

Take chapter-wise, subject-wise and Complete syllabus mock tests and get in depth analysis of your test..

₹ 4999/- ₹ 2999/-
Buy Now
Knockout NEET May 2021

An exhaustive E-learning program for the complete preparation of NEET..

₹ 22999/- ₹ 11999/-
Buy Now
Exams
Articles
Questions