Find
We are given the limit expression:
$$
\lim_{x \to 0} \frac{1 + \sin x - \cos x}{1 + \sin(px) - \cos(px)}
$$
Let’s solve this step-by-step using **Taylor expansion** (or small-angle approximation) around $x \to 0$:
---
### **Step 1: Taylor Expansion near 0**
$$
\sin x \approx x - \frac{x^3}{6}, \quad \cos x \approx 1 - \frac{x^2}{2}
$$
So the **numerator** becomes:
$$
1 + \sin x - \cos x \approx 1 + \left(x - \frac{x^3}{6}\right) - \left(1 - \frac{x^2}{2}\right)
= x - \frac{x^3}{6} + \frac{x^2}{2}
$$
Ignoring higher order terms ($x^3$ and smaller) near 0:
$$
\text{Numerator} \approx x + \frac{x^2}{2}
$$
Similarly, for the **denominator**:
$$
\sin(px) \approx px - \frac{(px)^3}{6}, \quad \cos(px) \approx 1 - \frac{(px)^2}{2}
$$
$$
1 + \sin(px) - \cos(px) \approx 1 + \left(px - \frac{(px)^3}{6} \right) - \left(1 - \frac{(px)^2}{2} \right)
= px + \frac{(px)^2}{2} - \frac{(px)^3}{6}
$$
Again, ignoring higher-order terms:
$$
\text{Denominator} \approx px + \frac{p^2x^2}{2}
$$
---
### **Step 2: Take the Limit**
So the limit becomes:
$$
\lim_{x \to 0} \frac{x + \frac{x^2}{2}}{px + \frac{p^2x^2}{2}}
$$
Divide numerator and denominator by $x$ (since $x \to 0$, $x \ne 0$):
$$
= \lim_{x \to 0} \frac{1 + \frac{x}{2}}{p + \frac{p^2x}{2}} \to \frac{1}{p}
$$
---
###Final Answer:
$$
\boxed{\frac{1}{p}}
$$