For the matrix A= \begin{bmatrix} 2 &3 \\ 5&7 \end{bmatrix},   find  \left ( A+{A}' \right )   and verify that it is a symmetric matrix.

 

 

 

 
 
 
 
 

Answers (1)

A= \begin{bmatrix} 2 &3 \\ 5 &7 \end{bmatrix}\; \; find \left ( A+{A}' \right ) as
A+{A}'= \begin{bmatrix} 2 &3 \\ 5 &7 \end{bmatrix}+\begin{bmatrix} 2 &5 \\ 3 &7 \end{bmatrix}= \begin{bmatrix} 4 &8 \\ 8 &14 \end{bmatrix}
Also \left ( A+{A}' \right )'= \begin{bmatrix} 4 & 8\\ 8&14 \end{bmatrix}= A+{A}',so\: A+{A}'    is a symmetric matrix.

Preparation Products

Knockout NEET May 2021

An exhaustive E-learning program for the complete preparation of NEET..

₹ 22999/- ₹ 14999/-
Buy Now
Knockout BITSAT 2020

It is an exhaustive preparation module made exclusively for cracking BITSAT..

₹ 4999/- ₹ 1999/-
Buy Now
Knockout NEET May 2022

An exhaustive E-learning program for the complete preparation of NEET..

₹ 34999/- ₹ 24999/-
Buy Now
Knockout JEE Main April 2021

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 22999/- ₹ 14999/-
Buy Now
Knockout JEE Main April 2022

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 34999/- ₹ 24999/-
Buy Now
Exams
Articles
Questions