Form the differential equation representing the family of curves y=e^{2x}(a+bx), where ‘a’ and ‘b’ are arbitrary constants. 

 

 

 

 
 
 
 
 

Answers (1)

y=e^{2x}(a+bx)  [given]       ---(1)

Differentiating with respect to x, we get

\frac{\mathrm{d}y }{\mathrm{d} x}=e^{2x}(b)+2(a+bx)e^{2x}

\frac{\mathrm{d}y }{\mathrm{d} x}=be^{2x}+2y           --from (1)

\frac{\mathrm{d}y }{\mathrm{d} x}-2y=be^{2x}           --(2)

Again, differentiating with respect to x, we get

\frac{\mathrm{d^2}y }{\mathrm{d} x^2}-2\frac{\mathrm{d} y}{\mathrm{d} x}=2be^{2x}

\frac{\mathrm{d^2}y }{\mathrm{d} x^2}-2\frac{\mathrm{d} y}{\mathrm{d} x}=2\left ( \frac{\mathrm{d} y}{\mathrm{d} x}-2y \right )          -- from (2)

\frac{\mathrm{d^2}y }{\mathrm{d} x^2}-2\frac{\mathrm{d} y}{\mathrm{d} x}=2\frac{\mathrm{d} y}{\mathrm{d} x}-4y

\frac{\mathrm{d^2}y }{\mathrm{d} x^2}-4\frac{\mathrm{d} y}{\mathrm{d} x}+4y=0

This is the required differential equation.

Preparation Products

Knockout KCET 2021

An exhaustive E-learning program for the complete preparation of KCET exam..

₹ 4999/- ₹ 2999/-
Buy Now
Knockout KCET JEE Main 2021

It is an exhaustive preparation module made exclusively for cracking JEE & KCET.

₹ 27999/- ₹ 16999/-
Buy Now
Knockout NEET Sept 2020

An exhaustive E-learning program for the complete preparation of NEET..

₹ 15999/- ₹ 6999/-
Buy Now
Rank Booster NEET 2020

This course will help student to be better prepared and study in the right direction for NEET..

₹ 9999/- ₹ 4999/-
Buy Now
Knockout JEE Main Sept 2020

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 12999/- ₹ 6999/-
Buy Now
Exams
Articles
Questions