Get Answers to all your Questions

header-bg qa

From a point on the ground, the angles of elevation of the bottom and the top of a transmission tower fixed at the top of a 20 m high building are 45° and 60° respectively. Find the height of the tower. (Use \sqrt{3} = 1.73 )

 

 
 
 
 
 

Answers (1)

Given : 

BC=20\; m

\angle B\!DC=45^{\circ}

\angle A\!DC=60^{\circ}

To find :  AB=h=?

In  \bigtriangleup BCD \;\;\;\; (\angle C =90^{\circ})

\tan 45=\frac{BC}{CD}

1=\frac{20}{CD}\;\;\;\; (\because \tan 45 =1)

CD=20\; m \;\;\;\;\;-(1)

In  \bigtriangleup AC\!D,

\tan 60=\frac{AC}{CD}

\sqrt{3}=\frac{AC}{20}\;\;\;\;\;\;\;(CD=20\;m(\text{from (1)}))

\Rightarrow AC=20\sqrt{3}\; m

Now, 

AC=AB+BC=20\sqrt{3}

\Rightarrow h+20=20\sqrt{3}

\Rightarrow h=20(\sqrt{3}-1)

          =20(1.732-1)

          =20(0.732)

 h=14.64\; m

Posted by

Safeer PP

View full answer