Get Answers to all your Questions

header-bg qa

From a solid cylinder whose height is 8 cm and radius 6 cm, a conical cavity of same height and same base radius is hollowed out. Find the total surface area of the remaining solid. (Take \pi = 3.14)

 

Answers (1)

\text{height of cylinder}=h=8\; cm

\text{radius of cylinder}=r=6\; cm

\text{Slant height of cone}=l=\sqrt{h^2+r^2}

         =\sqrt{8^2+6^2}=\sqrt{64+36}=\sqrt{100}

 l=10\; cm

\text{T.S.A of remaining solid}=\text{C.S.A of cylinder}+\text{C.S.A of cone}+\text{area of top of cylinder}

                                                 =2\pi rh+\pi rl+\pi r^2

                                                 =\pi r[2h+l+r]

                                    =\frac{22}{7}\times 6[2\times 8+10+6]

                                    =\frac{22\times 6\times 32}{7}

                                    =\frac{4227}{7}

\text{T.S.A of remaining solid}=603.4\; cm^2

Posted by

Safeer PP

View full answer