Get Answers to all your Questions

header-bg qa

From a solid right circular cylinder of height 2·4 cm and radius 0·7 cm, a right circular cone of same height and same radius is cut out. Find the total surface area of the remaining solid.

 

 

 

 
 
 
 
 

Answers (1)

Given :

height of cylinder,  h=2.4 \; cm

radius of cylinder, r=0.7 \; cm

Slant height of cone =l=\sqrt{h^2+r^2}

                        =\sqrt{2.4^2+0.7^2} =\sqrt{5.76+0.49}                         l=2.5\; cm

T.S.A of remaining solid = C.S.A of cylinder + C.S.A of cone + area of top of the cylinder

=2 \pi r h + \pi r l +\pi r^2

=\pi[2 r h + r l + r^2]

=\pi r[2 h + l + r]

=\pi r[2 \times 2.4 + 2.5 + 0.7]

=\frac{22}{7}\times 0.7[8]

=17.6\; cm^2

 

 

Posted by

Ravindra Pindel

View full answer