If (x-a)^2+(y-b)^2=c^2, for some c>0, prove that \frac{\left [ 1+\left ( \frac{\mathrm{d} y}{\mathrm{d} x} \right )^2\right ]^{\frac{3}{2}}}{\frac{\mathrm{d}^2y }{\mathrm{d} x^2}} is a constant independent of a and b.

 

 

 

 

 
 
 
 
 

Answers (1)

(x-a)^2+(y-b)^2=c^2,  c>0\: \: \: \: -(i)

On differentiating equation (i) w.r.t. x we get 

2(x-a)+2(y-b)\frac{\mathrm{d} y}{\mathrm{d} x}=0

\Rightarrow (x-a)+(y-b)\frac{\mathrm{d} y}{\mathrm{d} x}=0

\Rightarrow \frac{\mathrm{d} y}{\mathrm{d} x}=\frac{-(x-a)}{(y-b)}\: \: \: \: \: -(ii)

Again, differentiating equation (ii) w.r.t x we get

\frac{\mathrm{d} ^2y}{\mathrm{d} x^2}=-\left [ \frac{(y+b)\frac{\mathrm{d} }{\mathrm{d} x}(x-a)-(x-a)\frac{\mathrm{d} }{\mathrm{d} x}(y-b)}{(y-b)^2} \right ]

=-\left [ \frac{(y-b)-(x-a)\frac{\mathrm{d} y}{\mathrm{d} x}}{(y-b)^2} \right ]

\Rightarrow -\left [ \frac{(y-b)+\frac{(x-a)(x-a)}{(y-b)}}{(y-b)^2} \right ] \left [ from \: equation (ii )\frac{\mathrm{d} y}{\mathrm{d} x}=\frac{-(x-a)}{(y-b)} \right ]

=-\left [ \frac{(y-b)+\frac{(x-a)^2}{y-b}}{(y-b)^2} \right ]

=-\left [ \frac{(y-b)^2+(x-a)^2}{(y-b)^3} \right ]

=-\left [ \frac{c^2}{(y-b)^3} \right ]     \left [ \because from\: equation(ii,(x-a)^2+(y-b)^2=c^2 \right ]

Now, \frac{\left [ 1+\left ( \frac{\mathrm{d} y}{\mathrm{d} x} \right )^2 \right ]^{\frac{3}{2}}}{\frac{\mathrm{d} ^2y}{\mathrm{d} x^2}}

\Rightarrow \frac{-\left [ 1+\frac{(x-a)^2}{(y-b)^2} \right ]^{\frac{3}{2}}}{\frac{c^2}{(y-b)^3}}\Rightarrow \frac{-\left [ (y-b)^2+(x-a)^2 \right ]^{\frac{3}{2}}}{c^2}

\Rightarrow \frac{-c^{2\times \frac{3}{2}}}{c^2}\: \: \: \left [ \because c^2=(y-b)^2+(x-a)^2 \right ]

\Rightarrow \frac{-c^3}{c^2}\Rightarrow -c\Rightarrow constant

It shows that \frac{\left [ 1+\left ( \frac{\mathrm{d} y}{\mathrm{d} x} \right )^2 \right ]^{\frac{3}{2}}}{\frac{\mathrm{d} ^2y}{\mathrm{d} x^2}} is independent of a and b.

Hence proved. 

 

Preparation Products

JEE Main Rank Booster 2021

This course will help student to be better prepared and study in the right direction for JEE Main..

₹ 13999/- ₹ 9999/-
Buy Now
Rank Booster NEET 2021

This course will help student to be better prepared and study in the right direction for NEET..

₹ 13999/- ₹ 9999/-
Buy Now
Knockout JEE Main April 2021 (Subscription)

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 4999/-
Buy Now
Knockout NEET May 2021

An exhaustive E-learning program for the complete preparation of NEET..

₹ 22999/- ₹ 14999/-
Buy Now
Knockout NEET May 2022

An exhaustive E-learning program for the complete preparation of NEET..

₹ 34999/- ₹ 24999/-
Buy Now
Exams
Articles
Questions