Get Answers to all your Questions

header-bg qa

If the sum of the first 6 terms of an A.P. is 36 and that of the first  16 terms is 256, find the sum of the first 11 terms. 

 

Answers (1)

If the sum of the first 6 terms of an A.P. is 36 and that of the first  16 terms is 256, find the sum of the first 11 terms. 

Sum of n terms in AP S_n=\frac{n}{2}\left [ 2a+(n-1)d \right ]

According to the statements given,

Sum of first six terms S_6=\frac{6}{2}\left [ 2a+(6-1)d \right ]

3\left [ 2a+5d \right ]=36

\left [ 2a+5d \right ]=12........(1)

Sum of first fourteen terms S_{16}=\frac{16}{2}\left [ 2a+(16-1)d \right ]

8\left [ 2a+15d \right ]=256

\left [ 2a+15d \right ]=32........(2)

Subtracting eqn(2) from eqn(1)

2a+5d-2a-15d=12-32

-10d=-20

d=2.

Putting d in eqn (1)

2a+5(2)=12

2a+10=12

2a=2

a=1

Sum of n numbers of AP

S_{11}=\frac{11}{2}\left [ 1\times 2+(11-1)2 \right ]

S_{11}=121

 

Posted by

Safeer PP

View full answer