If \left ( a+bx \right )e^{\frac{y}{x}}= x,  then prove that
x^{3}\frac{d^{2y}}{dx^{2}}= \left ( x\frac{dy}{dx}-y \right )^{2}

 

 

 

 
 
 
 
 

Answers (1)

we have, \left ( a+bx \right )e^{\frac{y}{x}}= x
\Rightarrow e^{\frac{y}{x}}= \frac{x}{a+bx}
\Rightarrow \frac{y}{x}= \log \left ( \frac{x}{a+bx} \right )\Rightarrow y=x\log \left ( \frac{x}{a+bx} \right )
\Rightarrow y= x\left \{ \log x-\log \left ( a+bx \right ) \right \} \Rightarrow \frac{y}{x}= \log x-\log \left ( a+bx \right )On differentiating w.r.t x, we get
\frac{x\frac{dy}{dx}-y}{x^{2}}= \frac{1}{x}-\frac{1}{a+bx}xb\Rightarrow \frac{1}{x^{2}}\left ( \frac{xdy}{dx}-y \right )= \frac{1}{x}-\frac{b}{a+bx}
\Rightarrow x\frac{dy}{dx}-y= x^{2}\left ( \frac{1}{x}-\frac{b}{a+bx} \right )
\Rightarrow x\frac{dy}{dx}-y= \frac{ax}{a+bx}-(i)
Again,differentiating both side w.r.t x
\frac{xd^{2}y}{dx^{2}}+\frac{dy}{dx}-\frac{dy}{dx}= \frac{\left ( a+bx \right )a-ax\times b}{\left ( a+bx \right )^{2}}
\Rightarrow \frac{xd^{2}y}{dx^{2}}= \frac{a^{2}+abx-abx}{\left ( a+bx \right )^{2}}
\Rightarrow \frac{xd^{2}y}{dx^{2}}= \frac{a^{2}}{\left ( a+bx \right )^{2}}
On multiplying both side by x^{2},we get
x^{3}\frac{d^{2}y}{dx^{2}}= \frac{a^{2}x^{2}}{\left ( a+bx \right )^{2}}
x^{3}\frac{d^{2}y}{dx^{2}}=\left ( \frac{ax}{a+bx} \right )^{2}-(ii)
from (i) and(ii) we get
x^{3}\frac{d^{2}y}{dx^{2}}=\left ( \frac{xdy}{dx} -y\right )^{2}
hence proved.




 

Most Viewed Questions

Related Chapters

Preparation Products

Knockout CUET (Physics, Chemistry and Mathematics)

Complete Study Material based on Class 12th Syllabus, 10000+ Question Bank, Unlimited Chapter-Wise and Subject-Wise Mock Tests, Study Improvement Plan.

₹ 7999/- ₹ 4999/-
Buy Now
Knockout CUET (Physics, Chemistry and Biology)

Complete Study Material based on Class 12th Syllabus, 10000+ Question Bank, Unlimited Chapter-Wise and Subject-Wise Mock Tests, Study Improvement Plan.

₹ 7999/- ₹ 4999/-
Buy Now
Knockout JEE Main (Six Month Subscription)

- AI Coach Study Modules, - Unlimited Mock Tests, - Study Improvement Plan.

₹ 9999/- ₹ 8499/-
Buy Now
Knockout JEE Main (Nine Month Subscription)

- AI Coach Study Modules, - Unlimited Mock Tests, - Study Improvement Plan.

₹ 13999/- ₹ 12499/-
Buy Now
Knockout NEET (Six Month Subscription)

- AI Coach Study Modules, - Unlimited Mock Tests, - Study Improvement Plan.

₹ 9999/- ₹ 8499/-
Buy Now
Boost your Preparation for JEE Main with our Foundation Course
 
Exams
Articles
Questions