Get Answers to all your Questions

header-bg qa

In a series LCR circuit connected to an a.c. source of voltage v=v_{m} \sin \omega t, use phasor diagram to derive an expression for the current in the circuit. Hence obtain the expression for the power dissipated in the circuit. Show that power dissipated at resonance is maximum.

 

 

 

 
 
 
 
 

Answers (1)

Phasor diagram

\left | V \right |=\sqrt{V{_{R}}^{2}+(V_{L}-V_{C})^{2}}

         =\sqrt{(IR)^{2}+(IX_{L}-IX_{C})^{2}}

 V=I\sqrt{R^{2}+\left ( X_{L}-X_{C} \right )^{2}}

\left | I \right |=\frac{\left | V \right |}{\sqrt{R^{2}+\left ( X_{L}-X_{C} \right )^{2}}}

\phi =\tan ^{-1}\left ( \frac{V_{L}-V_{C}}{R} \right )=\tan ^{-1}\left ( \frac{X_{L}-X_{_{C}}}{R} \right )

I = i_{m}\sin \left ( \omega t-\phi \right )

For V_{C}>V_{L}

I=i_{m}\sin \left ( \omega t+\phi \right )

Power dissipated

P= VI

= V_{m}i_{m}\sin \omega t\; \sin (\omega t-\phi )

=\frac{V_{m}i_{m}}{2}\left [ \cos \phi -\cos (2\omega t-\phi ) \right ]

The average power over a cycle

P_{av}=\frac{V_{m}i_{m}}{2}\cos \phi

         =VI\cos \phi

Resonance X_{L}=X_{C}

\therefore \phi =O

\Rightarrow \cos \phi =1

Power P_{av}=VI\cos \phi has maximum value at resonance.

Posted by

Safeer PP

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads