Get Answers to all your Questions

header-bg qa

In Fig. 3, the radius of incircle of \bigtriangleup ABC of area 84\;cm^2 is 4 cm and the lengths of the segments AP and BP into which side AB is divided by the point of contact P are 6 cm and 8 cm. Find the lengths of the sides AC and BC.

 

 
 
 
 
 

Answers (2)

Given : \text{area of }\bigtriangleup ABC=84\; cm^2

\text{radius of circle}=4\; cm

AB=AP+PB

         =6+8

AB=14\; cm

Now, we know tangents drawn from external point to the circle are equal, hence, 

AP=AR=6\; cm

B\!P=BQ=8\; cm

RC=QC=x\; cm

\text{area of }\bigtriangleup ABC=\text{area of }(\bigtriangleup O\!AB + \bigtriangleup O\!AC + \bigtriangleup O\!BC)

84= \frac{1}{2} \times O\!P \times AB + \frac{1}{2} \times AC \times O\!R + \frac{1}{2} \times BC \times OQ

84= \frac{1}{2} \times 4 \times (AP+BP) + \frac{1}{2} \times (AR+RC) \times 4 + \frac{1}{2} \times (BQ+QC) \times 4

84= \frac{1}{2} \times 4 [AP+BP+AR+RC+BQ+QC]

\frac{84}{2}= [6+8+6+x+8+x]

48= 28+2x

2x=48-28

\Rightarrow 2x=20

\Rightarrow x=10 \; cm

Length : 

AB=AP+BP=14\; cm

AC=AR+RC=6+10=16\; cm

BC=BQ+QC=8+10=18\; cm

Posted by

Safeer PP

View full answer

84/2 =6+8+6+x+8+x

= 42= 28+2x 

=2x=42-28

=X=14/2 

=X=7 

Length 

AC= 6+x

=6+7=13

BC= 8+x

=8+7=15

Posted by

Anand

View full answer