Get Answers to all your Questions

header-bg qa

In the given figure, O is the centre of the circle with AC = 24 cm, AB = 7 cm and \angle BOD =90^{\circ}. Find the area of the shaded region.

 

 

 

 
 
 
 
 

Answers (1)

Given \rightarrow 

AC=24\; cm

AB=7\; cm

\angle BOD =90^{\circ}

We know BC is diameter of the circle because it is passing through centre.

Theorem : Angle subtended by diameter on the circumference of the circle is 90^{\circ}

Hence \angle B\!AC =90^{\circ}

In  \bigtriangleup ABC  with \angle B\!AC=90^{\circ}

BC^2=AB^2+AC^2   (Pythagoras theorem)

BC=\sqrt{7^2+24^2}=\sqrt{49+576}=\sqrt{625}

BC=25\; cm

\text{Radius of circle}=\frac{BC}{2}=\frac{25}{2}=12.5

Shaded Area = Area of semicircle - Area of  \bigtriangleup ABC + area of sector DOB

=\frac{\pi }{2}r^2-\frac{1}{2}\times AB \times AC + \frac{90^{\circ}}{360^{\circ}}\pi r^2

=\frac{\pi }{2}\times (12.5)^2-\frac{1}{2}\times 24 \times 7 + \frac{1}{4}\pi (12.5)^2

=\pi (12.5)^2\left ( \frac{1}{2}+\frac{1}{4} \right )-12\times 7

=\frac{22}{7}\times (12.5)^2\times \frac{3}{4}-12\times 7

=\frac{22}{7}\times 156.25 \times \frac{3}{4}- 84

=\frac{10312.5}{28}- 84

=368.3 - 84

=284.3\: cm^2

 

 

Posted by

Ravindra Pindel

View full answer