Get Answers to all your Questions

header-bg qa

In what ratio does the point  \left ( \frac{24}{11},y \right ) divide the line segment joining the points P(2, - 2) and Q(3, 7) ? Also find the value of y.

 

 

 

 
 
 
 
 

Answers (1)

Given : 

P=(x_1,y_1)=(2,-2)

Q=(x_2,y_2)=(3,7)

R=(x_3,y_3)=\left ( \frac{24}{11},y \right )

Let 

\frac{PR}{QR}=\frac{k}{1}

R(x,y)=\left ( \frac{kx_2+x_1}{k+1},\frac{ky_2+y_1}{k+1} \right )

\frac{24}{11}=\frac{k\times 3+2}{k+1}     (comparing the x coordinate)

\Rightarrow 24(k+1)=11(3k+2)

\Rightarrow 24k+24=33k+22

\Rightarrow 24-22=(33-24)k

\Rightarrow k=\frac{2}{9}

Now for the y coordinate of R :

y=\frac{\frac{2}{9}\times 7+(-2)}{\frac{2}{9}+1}

    =\frac{\frac{14}{9}-2}{\frac{2}{9}+1}

    =\frac{14-2\times 9}{11}

    =\frac{14-18}{11}

    =\frac{-4}{11}

R=\left ( \frac{24}{11},\frac{-4}{11} \right )

 

    

Posted by

Ravindra Pindel

View full answer