Let an operation \ast on the set of natural numbers N be defined by a\ast b= a^{b}\cdot Find(i) wheteher \ast is a binary or not, and (ii) if it is a binary, then is it commutative or not.

 

 

 

 
 
 
 
 

Answers (1)

(i) As a^{b}\, \epsilon N for all a,b\: \epsilon N
ie    a\ast b\: \epsilon N  a,b\: \epsilon N
so \ast is binary
(ii) As 1^{2}\neq 2^{1}\; so\; 1\ast 2\neq 2\ast 1    therefore \ast is not commutative

Preparation Products

Knockout NEET Sept 2020

An exhaustive E-learning program for the complete preparation of NEET..

₹ 15999/- ₹ 6999/-
Buy Now
Rank Booster NEET 2020

This course will help student to be better prepared and study in the right direction for NEET..

₹ 9999/- ₹ 4999/-
Buy Now
Knockout JEE Main Sept 2020

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 12999/- ₹ 6999/-
Buy Now
Test Series NEET Sept 2020

Take chapter-wise, subject-wise and Complete syllabus mock tests and get in depth analysis of your test..

₹ 4999/- ₹ 2999/-
Buy Now
Knockout NEET May 2021

An exhaustive E-learning program for the complete preparation of NEET..

₹ 22999/- ₹ 11999/-
Buy Now
Exams
Articles
Questions