Let  f:N\rightarrow Y be a function defined as f(x)=4x+3,\: \: where\: \: Y=\left \{ y\equiv N:y=4x+3,for\: \: some\: \: x\equiv N \right \}. Show that f is invertible. Find its inverse.

 

 

 

 
 
 
 
 

Answers (1)

Let f:N \rightarrow Y be a function defined as 

f(x)=4x+3,\: \: where\: \: Y=\left \{ y\equiv N:y=4x+3,for\: \: some\: \: x\equiv N \right \}.Arbitrary Element Y 

y=4x+3

x=\frac{y-3}{4}

Define g:Y\rightarrow N\: \: by\: \: g(y)=\frac{y-3}{4}

Now gof(x)=f(f(x))=g(4x+3)=\frac{4x+3-3}{4}=x

and fog(y)=f(g(y))=f\left ( \frac{y-3}{4} \right )=\frac{4(y-3)}{4}+3=y-3+3=y

This shows that gof=I_x and fog=Iy which implies that f is invertible and g is the inverse of f.

\therefore Inverse\: \: of\: \: f'=g(y)=\frac{y-3}{4}

Hence Proved.

 

Preparation Products

Knockout NEET July 2020

An exhaustive E-learning program for the complete preparation of NEET..

₹ 15999/- ₹ 6999/-
Buy Now
Rank Booster NEET 2020

This course will help student to be better prepared and study in the right direction for NEET..

₹ 9999/- ₹ 4999/-
Buy Now
Knockout JEE Main July 2020

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 12999/- ₹ 6999/-
Buy Now
Test Series NEET July 2020

Take chapter-wise, subject-wise and Complete syllabus mock tests and get in depth analysis of your test..

₹ 4999/- ₹ 2999/-
Buy Now
Knockout NEET May 2021

An exhaustive E-learning program for the complete preparation of NEET..

₹ 22999/- ₹ 11999/-
Buy Now
Exams
Articles
Questions