Get Answers to all your Questions

header-bg qa

Let f : \mathrm{N\rightarrow N} be a function defined as f(x) = 4x^2 +12x + 15. Show that f : \mathrm{N\rightarrow S} is invertable ( Where S is the range of f). Find the inverse of f and hence find f ^{-1}(31) and f ^{-1}(87).

 

 

 

 
 
 
 
 

Answers (1)

Here f : \mathrm{N\rightarrow N}f(x) = 4x^2 +12x + 15

Let y be an arbitrary element of range of function f. Then y = 4x^2 +12x + 15, for some x in N, which implies that y = (2x+3)^2 + 6

This gives x = \frac{\sqrt{y-6}- 3}{2}     as y \geq 6

Let us define g: S\rightarrow N by g(y) = \frac{\sqrt{y-6}- 3}{2}

Now, g\mathrm{o}f = g(f(x)) = g(4x^2+ 12x + 15)

                    = g((2x+3)^2 + 6) = \frac{\sqrt{((2x+3)^2 +6) -6} - 3}{2} = x

And f \mathrm{o} g(y) =f(g(y)) = f ( \frac{\sqrt{y-6}- 3}{2} ) = \left (2 \left (\frac{\sqrt{y-6}- 3}{2} \right ) + 3 \right ) ^2 + 6 = y

Hence g \mathrm{o} f = I_N and f \mathrm{o} g = I_S

This implies that f is invertible with f^{-1} = g

S, f^{-1} = \frac{\sqrt{y-6}- 3}{2}, i.e f^{-1}(x) = \frac{\sqrt{x-6}- 3}{2}

Now, f^{-1}(31) = \frac{\sqrt{31-6}- 3}{2} = 1f^{-1}(87) = \frac{\sqrt{87-6}- 3}{2} = 3

 

Posted by

Ravindra Pindel

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads