Get Answers to all your Questions

header-bg qa

Let [x] denotes the greatest integer not exceeding the real number x , then the domain of the function f(x)=ln (x -[x]) is

Answers (1)


Solution:     We know that  x-[x]=x., the fractional part of x.

                       Moreover  , 0< x< 1.

                      If xin Z , then ln x is not defined. For all other non-

                     integral  x in R  ,  ln x is defined.

                   	herefore             D(f)=R-Z.

Posted by

Deependra Verma

View full answer