Prove that 1 − sin 2 θ/ cos 2θ = 1.
Given- $\frac{1 - \sin^2 \theta}{\cos^2 \theta}$
Using the identity, $\sin^2 \theta + \cos^2 \theta = 1 \Rightarrow 1 - \sin^2 \theta = \cos^2 \theta$
So, $\frac{1 - \sin^2 \theta}{\cos^2 \theta} = \frac{\cos^2 \theta}{\cos^2 \theta} = 1$