Prove that :
\cos^{-1}\left ( \frac{12}{13} \right )+\sin^{-1}\left ( \frac{3}{5} \right )= \sin^{-1}\left ( \frac{56}{65} \right )

 

 

 

 
 
 
 
 

Answers (1)

L.H.S: \cos^{-1}\left ( \frac{12}{13} \right )+\sin^{-1}\left ( \frac{3}{5} \right )
          = \tan^{-1}\left ( \frac{5}{12} \right )+\tan^{-1}\left ( \frac{3}{4} \right )
\Rightarrow \tan^{-1}\left ( \frac{\frac{5}{12}+\frac{3}{4}}{1-\frac{5}{12}\times \frac{3}{4}} \right )\Rightarrow \tan^{-1}\left ( \frac{\frac{20+36}{\not{48}}}{\frac{48-15}{\not{48}}} \right )
\Rightarrow \tan^{-1}\left ( \frac{56}{33} \right )                                 Let  \tan^{-1}\left ( \frac{56}{33} \right )= \theta \Rightarrow \tan \theta = \frac{56}{33}
                  \therefore \sin \theta = \tan \theta \cos \theta = \tan \theta \times \frac{1}{\sec \theta }
Hence proved                                                           = \frac{56}{33}\times \frac{1}{\sqrt{1+\left ( \frac{56}{33} \right )^{2}}}
                                                                     \rightarrow \sin \theta = \frac{56}{33}\times \frac{33}{\sqrt{\left ( 33 \right )^{2}+56}}= \frac{56}{65}
                                                                        \therefore \theta = \sin^{-1}\frac{56}{65}           

LHS= RHS

Preparation Products

Knockout NEET May 2021 (One Month)

An exhaustive E-learning program for the complete preparation of NEET..

₹ 14000/- ₹ 6999/-
Buy Now
Foundation 2021 Class 10th Maths

Master Maths with "Foundation course for class 10th" -AI Enabled Personalized Coaching -200+ Video lectures -Chapter-wise tests.

₹ 350/- ₹ 112/-
Buy Now
Foundation 2021 Class 9th Maths

Master Maths with "Foundation course for class 9th" -AI Enabled Personalized Coaching -200+ Video lectures -Chapter-wise tests.

₹ 350/- ₹ 112/-
Buy Now
Knockout JEE Main April 2021 (One Month)

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 14000/- ₹ 6999/-
Buy Now
Knockout NEET May 2021

An exhaustive E-learning program for the complete preparation of NEET..

₹ 22999/- ₹ 14999/-
Buy Now
Boost your Preparation for JEE Main with our Foundation Course
 
Exams
Articles
Questions