Prove that the curves y^2 = 4x and x^2 = 4y  Prove that the curvesx = 0, x= 4, y= 0 , y =4 into three equal parts.

 

 

 

 
 
 
 
 

Answers (1)

Given:     y^2 = 4x\qquad -(i)

                x^2 = 4y\qquad -(ii)

                x = 0, x= 4, y= 0 , y =4 

           

For point of intersection put y = \frac{x^2}{4}in (i)

    \\\Rightarrow \left(\frac{x^2}{4} \right )^2 = 4x \Rightarrow \frac{x^4}{16} = 4x\\ \Rightarrow x^3 = 4 \text{ or } x^4 =64 x \\\Rightarrow x(x^3-64) =0\qquad x = 0, x= 4

Area of Part A,

I = \int_0^4x \text{ of the curve I}dy

I = \int_0^4\frac{y^4}{4}dy

    \Rightarrow \frac{1}{4\times 3}[y^3] \Rightarrow \frac{1}{12} [ 4^3]

I = \frac{64}{12} \Rightarrow \frac{16}{3} \text{ sq.units}

Area of Part B,

I = \int_0^4 y\text{ of the 1}^{st}\text{ curve}dx - \int_0^4 y\text{ of the 2}^{nd}\text{ curve}dx

    \Rightarrow \int_0^42\sqrt x dx - \int_0^4\frac{x^2}{4}dx

    \Rightarrow \frac{2\times 2}{3}\left[x^{\frac{3}{2}} \right ]_0^4 - \frac{1}{12}\left[x^3 \right ]_0^4

I \Rightarrow \frac{4}{3}\left[4^{\frac{3}{2}} \right ] - \frac{1}{12}\left[4^3 \right ]

    \Rightarrow \frac{4}{3}\times 8 - \frac{1}{12}\times 64\Rightarrow \frac{32}{3} - \frac{16}{3}

I = \frac{16}{3} \text{ sq.units}

Area of part C

I = \int_0^4y \text{ of the curve I}dx

I = \int_0^4\frac{x^4}{4}dx

    \Rightarrow \frac{1}{4\times 3}[x^3] \Rightarrow \frac{1}{12} [ 4^3]

I = \frac{64}{12} \Rightarrow \frac{16}{3} \text{ sq.units}

I = \frac{16}{3} \text{ sq.units}

Preparation Products

Knockout NEET May 2021

An exhaustive E-learning program for the complete preparation of NEET..

₹ 22999/- ₹ 14999/-
Buy Now
Knockout BITSAT 2020

It is an exhaustive preparation module made exclusively for cracking BITSAT..

₹ 4999/- ₹ 1999/-
Buy Now
Knockout NEET May 2022

An exhaustive E-learning program for the complete preparation of NEET..

₹ 34999/- ₹ 24999/-
Buy Now
Knockout JEE Main April 2021

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 22999/- ₹ 14999/-
Buy Now
Knockout JEE Main April 2022

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 34999/- ₹ 24999/-
Buy Now
Exams
Articles
Questions