Prove that the function f: N \rightarrow N, defined by f(x) = x^2 + x + 1 is one-one but not onto.

Find inverse of f: N \rightarrow S, where S is range of f.

 

 

 

 
 
 
 
 

Answers (1)

Given f: N \rightarrow Nnatural numbers

        f(x) = x^2 + x + 1    

        \\f'(x) = 2x + 1 \\ x = \frac{-1}{2}

For one-one:

    Let x_1,x_2\in N \qquad f(x_1) = f(x_2)

    \\x_1^2 + x_1 + 1 = x_2^2 + x_2 + 1 \\ x_1^2 - x_2^2 +x_1 - x_2 = 0 \\ (x_1 - x_2)[x_1 -x_2 +1] = 0 \\ x_1 - x_2 = 0 \quad [\therefore x_1 - x_2 + 1 \neq 0] \\\Rightarrow x_1 = x_2

It is one-one

For Onto: Let y = 1 \in N\ (Codomain)

\\x^2 + x + 1 = 1 \\ x^2 + x = 0 \\ x(x+1) = 0 \therefore x = 0,-1\notin N

So, f is not onto. Hence proved.

Nowf:N \rightarrow S where S (range of f given) f:N \rightarrow S is onto. Hence f is inversible.

Let y = x^2 + x +1

        y = x^2 + 2x\cdot\frac{1}{2} + \left (\frac{1}{2}\right)^2 - \left (\frac{1}{2}\right)^2 + 1

        y = \left(x + \frac{1}{2} \right )^2 + \frac{3}{4}

        y- \frac{3}{4} = \left(x + \frac{1}{2} \right )^2

        \frac{4y -3}{4} = \left(x + \frac{1}{2} \right )^2

\Rightarrow \pm \frac{\sqrt{4y -3}}{2} = x + \frac{1}{2}

\therefore \pm \frac{\sqrt{4y -3}}{2} = \frac{2x + 1}{2}

\therefore x = \frac{-1 \pm\sqrt{4y -3}}{2}

\Rightarrow x = \frac{-1 \pm\sqrt{4y -3}}{2} \qquad x\in N

Preparation Products

NEET Foundation 2022

NEET Foundation 2022.

₹ 14999/-
Buy Now
Biology Foundation for Class 10

Biology Foundation for Class 10.

₹ 999/- ₹ 499/-
Buy Now
Knockout NEET May 2023

Personalized AI Tutor and Adaptive Time Table, Self Study Material, Weekend Live Classes, Mentorship from our Experts, Unlimited Mock Tests and Personalized Analysis Reports, 24x7 Doubt Chat Support,.

₹ 39999/- ₹ 24999/-
Buy Now
Knockout NEET May 2023 Physics

Personalized AI Tutor and Adaptive Time Table, Self Study Material, Weekend Live Classes, Mentorship from our Experts, Unlimited Mock Tests and Personalized Analysis Reports, 24x7 Doubt Chat Support,.

₹ 19999/- ₹ 9999/-
Buy Now
Knockout NEET May 2023 Chemistry

Personalized AI Tutor and Adaptive Time Table, Self Study Material, Weekend Live Classes, Mentorship from our Experts, Unlimited Mock Tests and Personalized Analysis Reports, 24x7 Doubt Chat Support,.

₹ 19999/- ₹ 9999/-
Buy Now
Boost your Preparation for JEE Main with our Foundation Course
 
Exams
Articles
Questions