Prove that the function f: N \rightarrow N, defined by f(x) = x^2 + x + 1 is one-one but not onto.

Find inverse of f: N \rightarrow S, where S is range of f.

 

 

 

 
 
 
 
 

Answers (1)

Given f: N \rightarrow Nnatural numbers

        f(x) = x^2 + x + 1    

        \\f'(x) = 2x + 1 \\ x = \frac{-1}{2}

For one-one:

    Let x_1,x_2\in N \qquad f(x_1) = f(x_2)

    \\x_1^2 + x_1 + 1 = x_2^2 + x_2 + 1 \\ x_1^2 - x_2^2 +x_1 - x_2 = 0 \\ (x_1 - x_2)[x_1 -x_2 +1] = 0 \\ x_1 - x_2 = 0 \quad [\therefore x_1 - x_2 + 1 \neq 0] \\\Rightarrow x_1 = x_2

It is one-one

For Onto: Let y = 1 \in N\ (Codomain)

\\x^2 + x + 1 = 1 \\ x^2 + x = 0 \\ x(x+1) = 0 \therefore x = 0,-1\notin N

So, f is not onto. Hence proved.

Nowf:N \rightarrow S where S (range of f given) f:N \rightarrow S is onto. Hence f is inversible.

Let y = x^2 + x +1

        y = x^2 + 2x\cdot\frac{1}{2} + \left (\frac{1}{2}\right)^2 - \left (\frac{1}{2}\right)^2 + 1

        y = \left(x + \frac{1}{2} \right )^2 + \frac{3}{4}

        y- \frac{3}{4} = \left(x + \frac{1}{2} \right )^2

        \frac{4y -3}{4} = \left(x + \frac{1}{2} \right )^2

\Rightarrow \pm \frac{\sqrt{4y -3}}{2} = x + \frac{1}{2}

\therefore \pm \frac{\sqrt{4y -3}}{2} = \frac{2x + 1}{2}

\therefore x = \frac{-1 \pm\sqrt{4y -3}}{2}

\Rightarrow x = \frac{-1 \pm\sqrt{4y -3}}{2} \qquad x\in N

Preparation Products

Knockout KCET 2021

An exhaustive E-learning program for the complete preparation of KCET exam..

₹ 4999/- ₹ 2999/-
Buy Now
Knockout KCET JEE Main 2021

It is an exhaustive preparation module made exclusively for cracking JEE & KCET.

₹ 27999/- ₹ 16999/-
Buy Now
Knockout NEET Sept 2020

An exhaustive E-learning program for the complete preparation of NEET..

₹ 15999/- ₹ 6999/-
Buy Now
Rank Booster NEET 2020

This course will help student to be better prepared and study in the right direction for NEET..

₹ 9999/- ₹ 4999/-
Buy Now
Knockout JEE Main Sept 2020

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 12999/- ₹ 6999/-
Buy Now
Exams
Articles
Questions