Get Answers to all your Questions

header-bg qa

Prove that the ratio of the areas of two similar triangles is equal to the ratio of the squares on their corresponding sides.

 

 
 
 
 
 

Answers (1)

Given:    \rightarrow    \mathrm{\Delta ABC \sim\Delta PQR}

To prove:    \rightarrow    \mathrm{\frac{ar(ABC)}{ar(PQR)} =\left ( \frac{AB}{PQ} \right )^2 = \left ( \frac{BC}{QR} \right )^2 = \left ( \frac{CA}{RP} \right )^2}

Draw \mathrm{AM \perp BC} and \mathrm{PN \perp QR}

\mathrm{Ar(ABC) = \frac{1}{2}\times BC\times AM}\quad -(i)

\mathrm{Ar(PQR) = \frac{1}{2}\times QR\times PN}\quad -(ii)

Dividing eq (i) by (ii)

        \mathrm{\frac{ar(ABC)}{ar(PQR)} =\frac{\frac{1}{2}\times BC\times AM} {\frac{1}{2}\times QR\times PN}= \frac{BC\times AM}{QR\times PN}\qquad -(iii)}

Now in    \Delta\mathrm{ABM} and     \Delta\mathrm{PQN}

                \mathrm{\angle B = \angle Q\quad (\text{angles of similar } \Delta \text{ are equal})}

and        \mathrm{\angle M = \angle M\quad (\text{Both }90\degree)}

    \Rightarrow \Delta\mathrm{ABM}\sim\Delta\mathrm{PQN}\quad (\text{AA Similarity})

        \therefore \mathrm{\frac{AM}{PN} = \frac{AB}{PQ}\quad \text{(Corresponding sides of similar} \Delta\text{ are proportional)}\qquad -(iv)}

From (ii)

\begin{align*} \mathrm{\frac{ar(ABC)}{ar(PQR)}} & \mathrm{= \frac{BC}{QR}\times\frac{AM}{PN} }\\ & \mathrm{= \frac{BC}{QR}\times \frac{AB}{PQ}\quad [\text{From (iv)}]} \end{align*}

We have given,    \mathrm{\Delta ABC \sim \Delta PQR}

So,        \mathrm{\frac{AB}{PQ} = \frac{BC}{QR} = \frac{CA}{RP} \qquad -(vi)}

\mathrm{\Rightarrow \frac{ar(ABC)}{ar(PQR)} = \frac{AB}{PQ}\times \frac{AB}{PQ}}

\mathrm{\Rightarrow \frac{ar(ABC)}{ar(PQR)} =\left ( \frac{AB}{PQ} \right )^2 }

Now, again using equation (vi), we get

        \mathrm{\frac{ar(ABC)}{ar(PQR)} =\left ( \frac{AB}{PQ} \right )^2 = \left ( \frac{BC}{QR} \right )^2 = \left ( \frac{CA}{RP} \right )^2}

Hence proved,

Posted by

Safeer PP

View full answer