Get Answers to all your Questions

header-bg qa

Show that semi-verticle angle of a cone of maximum volume and given slant height is  \cos^{-1}\left ( \frac{1}{\sqrt{3}} \right ).

 

 

 

 
 
 
 
 

Answers (1)

Given slant height AB  l=\sqrt{r^2+h^2}

\Rightarrow l^2-h^2=r^2\; \; -(i)

Volume of the cone, V=\frac{1}{3}\pi r^2h

\Rightarrow V=\frac{1}{3}\pi \left [ l^2-h^2 \right ]h   [by using (i)] 

\Rightarrow V=\frac{1}{3}\pi \left [ l^2h-h^3 \right ]

On diff. wrt h both sides, \frac{\mathrm{d} V}{\mathrm{d} h}=\frac{1}{3}\pi \left [ l^2-3h^2 \right ]

Again diff wrt h both sides, \frac{\mathrm{d}^2 V}{\mathrm{d} h^2} =-2\pi h

For local points of maxima and minima 

\frac{\mathrm{d} V}{\mathrm{d} h}=0

\Rightarrow \frac{1}{3}\pi \left [ l^2 -3h^2\right ] =0\Rightarrow h=\frac{l}{\sqrt{3}}\Rightarrow \frac{d^2V}{dh^2}=-2\pi \left ( \frac{l}{\sqrt{3}} \right )<0

\therefore \left [ \frac{\mathrm{d} V}{\mathrm{d} h^2} \right ]_{at \; h=\frac{l}{3}}=-2\pi \left [ \frac{l}{\sqrt{3}} \right ]<0

So V is maximum at h=\frac{l}{\sqrt{3}}

Now in \triangle AOB, \cos \theta =\frac{h}{l}=\frac{1}{\sqrt{3}},

where \theta is the semi verticle angle of cone.

\therefore \theta =\cos^{-1}\left ( \frac{1}{\sqrt{3}} \right )

 

 

 

 

 

 

Posted by

Ravindra Pindel

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads