Show that the relation S in the set A= \left \{ x\: \epsilon\: Z:0\leq x\leq 12 \right \}  given by S= \left \{ \left ( a,b \right ):a,b\, \epsilon \, Z,\left | a-b \right | \right  is divisible by 3} is an equivalence relation.

 

 

 

 
 
 
 
 

Answers (1)

Reflexive
      S= \left \{ \left ( a,b \right ):a,b\, \epsilon A,\left | a-b \right |is \; divisible\; by\; 3 \right \}
    is defined on the set A= \left \{ x\, \epsilon \, z:0\leq x\leq 12 \right \}
     clearly, S is reflexive as 3 divides \left | a-a \right |= 0
                                                                  \psi a\, \epsilon \, A
symmetric
        further if \left ( a,b \right )\epsilon \, S  then 3 divides \left | a-b \right |.  therefore 3 divides \left | -\left ( b-a \right ) \right |.= \left | b-a \right |   as well
        Hence \left ( b,a \right )\, \epsilon S  which follows that S is symmetric
Transitive
             similarly, if \left ( a,b \right )\, \epsilon S  and \left ( b,c \right )\, \epsilon S  then \left | a-b \right |  and \left | b-c \right |   are both divisible by 3.
that is \left | a-b \right |= 3m     i.e a-b= \pm 3m
and    \left | b-c \right |= 3n    i.e  b-c= \pm 3n
so \left ( a-b \right )+\left ( b-c \right )= a-c= \pm 3\left ( m+n \right )
    \Rightarrow \left | a-c \right |= 3\left ( m+n \right )
\therefore \left | a-c \right |  is divisible by 3
This shows that S is transitive as \left ( a,c \right )\, \epsilon \, S
Then S is an equivalence relation in the set A
       

Most Viewed Questions

Preparation Products

Knockout NEET May 2023 (Easy Installments)

Personalized AI Tutor and Adaptive Time Table, Self Study Material, Mentorship from our Experts, Unlimited Mock Tests and Personalized Analysis Reports, 24x7 Doubt Chat Support,.

₹ 5499/-
Buy Now
Knockout JEE Main April 2021 (One Month)

Personalized AI Tutor and Adaptive Time Table, Self Study Material, Weekend Live Classes, Mentorship from our Experts, Unlimited Mock Tests and Personalized Analysis Reports, 24x7 Doubt Chat Support,.

₹ 14000/- ₹ 4999/-
Buy Now
Knockout NEET Aug 2021 (One Month)

Personalized AI Tutor and Adaptive Time Table, Self Study Material, Weekend Live Classes, Mentorship from our Experts, Unlimited Mock Tests and Personalized Analysis Reports, 24x7 Doubt Chat Support,.

₹ 14000/- ₹ 4999/-
Buy Now
Knockout JEE Main May 2021

Personalized AI Tutor and Adaptive Time Table, Self Study Material, Weekend Live Classes, Mentorship from our Experts, Unlimited Mock Tests and Personalized Analysis Reports, 24x7 Doubt Chat Support,.

₹ 22999/- ₹ 9999/-
Buy Now
Knockout NEET Aug 2021

Personalized AI Tutor and Adaptive Time Table, Self Study Material, Weekend Live Classes, Mentorship from our Experts, Unlimited Mock Tests and Personalized Analysis Reports, 24x7 Doubt Chat Support,.

₹ 22999/- ₹ 9999/-
Buy Now
Boost your Preparation for JEE Main with our Foundation Course
 
Exams
Articles
Questions