Solve $$
\sin 60^{\circ} \cos 30^{\circ}+\cos 60^{\circ} \sin 30^{\circ}
$$
Using the Trigonometric identity,
$$
\sin (A+B)=\sin A \cos B+\cos A \sin B
$$
From the given data in the question, $$
A=60^{\circ}, \quad B=30^{\circ}
$$
$$
\begin{aligned}
&\text { So, } \sin (A+B)=\sin (60+30)=\sin 90^{\circ}=1
\end{aligned}
$$