Get Answers to all your Questions

header-bg qa

The dimensions of a solid iron cuboid are  4.4 \; m \times 2.6 \; m \; \times 1.0\; m. It is melted and recast into a hollow cylindrical pipe of 30 cm inner radius and thickness 5 cm. Find the length of the pipe.

 

 

 

 
 
 
 
 

Answers (1)

Volume of solid iron cuboid = Volume of hollow cylinder

4.4 \times 2.6 \times 1.0 = \text{Volume of hollow cylinder}\; \; \; \; -(1)

Radius of inner cylinder (r)=30\; cm

Radius of outer cylinder (R)=r + \text{thickness}

                                                =30+5

                                                =35\; cm

Volume of hollow cylinder =\pi R^2l-\pi r^2l

                                          =\pi l(R^2-r^2)

\Rightarrow \pi l \left ( \left ( \frac{35}{100} \right )^2 - \left ( \frac{30}{100} \right )^2\right )=4.4\times 26\times 1

\Rightarrow \frac{3.14\times 325}{100\times 100}\times l=4.4\times 26\times 1

\Rightarrow l=\frac{4.4\times 2.6\times 100\times 100}{3.14\times 325}\; \; m

\Rightarrow l=112\; \; \text{metres}

 

 

Posted by

Ravindra Pindel

View full answer