Get Answers to all your Questions

header-bg qa

Two harmonic waves of monochromatic light

y_{1}=a \cos \omega t and y_{2}=a \cos \left (\omega t +\phi \right )

are superimposed on each other. Show that maximum intensity in interference pattern is four times the intensity due to each silt. Hence write the conditions for constructive and destructive interference in terms of the phase angle \phi.

 

 
 
 
 
 

Answers (1)

y_{1}=a \cos \omega t , y_{2}=a \cos \left (\omega t +\phi \right )

Resultant displacement 

y = y_{1}+y_{2}

y =A\cos \omega t + A\left ( \cos \omega t + \phi \right )

y =2A\cos \left ( \omega t +\frac{\phi}{2} \right )\cos \frac{\phi}{2}

y =2A\cos \frac{\phi}{2} \cos \left ( \omega t +\frac{\phi}{2} \right )

The amplitude of resultant wave =

 y =2A\cos \frac{\phi}{2}

Intensity I\propto A^{2}

I = 4I_{0}\cos ^{2}\phi

for constructive interference  I is maximum

for \phi = 0,\pm 2\pi,\pm 4\pi; i.e., \phi = 2n\pi

I = 4I_{0}         (constructive interference)

At maxima I = 4I_{0}

For destructive interference I is minimum. i.e., I = 0

\phi = \pm \pi,\pm 3\pi.....

\phi = \left ( 2n\pm 1 \right )\frac{\pi}{2}

Posted by

Safeer PP

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads