Using integration, find the area of the triangle whose vertices are (2, 3), (3, 5) and (4, 4).

 

 

 

 
 
 
 
 

Answers (1)

Given:    The vertices \Delta\text{ABC} A(2, 3), B(3, 5) and C(4, 4).

Equation of Line AB,

(y-3) = \frac{5-3}{3-2}(x-2)

(y-3) = 2(x-2)

y = 2x -4 +3

\underline{y = 2x -1}

Equation of Line BC,

(y-5) = \frac{4-5}{4-3}(x-3)

(y-5) = -(x-3)

\underline{y = -x +8}

Equation of Line AC

(y-3) = \frac{4-3}{4-2}(x-2)

(y-3) = \frac{-1}{2}(x-2)

y = \frac{x-2}{2} + 3

\underline{y = \frac{x +4}{2}}

I = \int _2^3 (2x-1)dx + \int^4_3(-x + 8)dx - \int_2^4\frac{x+4}{2}dx

Area of \Delta\text{ABC}

I = \int _2^3 y_{AB}dx + \int^4_3y_{BC}dx - \int_2^4y_{AC}dx

    \Rightarrow \left[x^2 \right ]_2^3 - \left[x \right ]_2^3 - \frac{1}{2}[x^2]_3^4 + 8\left[x \right ]_3^4 - \frac{1}{2}\left[\frac{x^2}{2} \right ]_2^4 + 2\left[x \right ]_2^4

    \Rightarrow [9-4] - [3-2] - \frac{1}{2}[16-9] + 8[4-3] - \frac{1}{4}[16-4] + 2[4-2]

I \Rightarrow 5 -1 -\frac{7}{2} + 8 -\frac{12}{4} + 4

    \Rightarrow 4 -\frac{7}{2} + 8 -3 + 4

        I = 13-\frac{7}{2} \Rightarrow I = \frac{19}{2} \ \text{sq . units}

Preparation Products

JEE Main Rank Booster 2021

This course will help student to be better prepared and study in the right direction for JEE Main..

₹ 13999/- ₹ 9999/-
Buy Now
Rank Booster NEET 2021

This course will help student to be better prepared and study in the right direction for NEET..

₹ 13999/- ₹ 9999/-
Buy Now
Knockout JEE Main April 2021 (Subscription)

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 4999/-
Buy Now
Knockout NEET May 2021

An exhaustive E-learning program for the complete preparation of NEET..

₹ 22999/- ₹ 14999/-
Buy Now
Knockout NEET May 2022

An exhaustive E-learning program for the complete preparation of NEET..

₹ 34999/- ₹ 24999/-
Buy Now
Exams
Articles
Questions