Using properties of determinants, find the value of x for which
\begin{vmatrix} 4-x & 4+x &4+x \\ 4+x& 4-x &4+x \\ 4+x&4+x & 4-x \end{vmatrix}= 0

 

 

 

 
 
 
 
 

Answers (1)

we have \begin{vmatrix} 4-x & 4+x &4+x \\ 4+x& 4-x &4+x \\ 4+x& 4+x &4-x \end{vmatrix}= 0
by R_{1}\rightarrow R_{1}-R_{2}\; \; \; ,R_{2}\rightarrow R_{2}-R_{3}
              \begin{vmatrix} -2x& 2x &0 \\ 0& -2x &2x \\ 4+x& 4+x &4-x \end{vmatrix}= 0


on expanding along C1 , we get
-2x(-2x(4-x)-2x(4+x))+\left ( 4+x \right )\left ( 4x^{2}-0 \right )=0
Either \left ( 12+x \right )=0\; \; or \; \; 4x^{2}= 0
\because x= 0\; or\; -12

Preparation Products

Knockout NEET Sept 2020

An exhaustive E-learning program for the complete preparation of NEET..

₹ 15999/- ₹ 6999/-
Buy Now
Rank Booster NEET 2020

This course will help student to be better prepared and study in the right direction for NEET..

₹ 9999/- ₹ 4999/-
Buy Now
Knockout JEE Main Sept 2020

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 12999/- ₹ 6999/-
Buy Now
Test Series NEET Sept 2020

Take chapter-wise, subject-wise and Complete syllabus mock tests and get in depth analysis of your test..

₹ 4999/- ₹ 2999/-
Buy Now
Knockout NEET May 2021

An exhaustive E-learning program for the complete preparation of NEET..

₹ 22999/- ₹ 11999/-
Buy Now
Exams
Articles
Questions