Using properties of determinants, show that

\begin{vmatrix} 3a &-a+b &-a+c \\ -b+a&3b -b+c & \\ -c+a& -c+b &3c \end{vmatrix}=3(a+b+c)(ab+bc+ca)

 

 

 

 
 
 
 
 

Answers (1)

\begin{vmatrix} 3a &-a+b &-a+c \\ -b+a&3b -b+c & \\ -c+a& -c+b &3c \end{vmatrix}=3(a+b+c)(ab+bc+ca)

LHS =RHS

 

LHS= \begin{vmatrix} 3a &-a+b & -a+c \\ -b+a&3b &-b+c \\ -c+a&-c+b &3c \end{vmatrix}

On applying operation C_1 \rightarrow C_1+C_2+C_3 we have,

\Rightarrow \begin{vmatrix} 3a-a+b-a+c &-a+b & -a+c\\ -b+a+3b-b+c& 3b &-b+c \\ -c+a-c+b+3c& -c+b &3c \end{vmatrix}

\Rightarrow \begin{vmatrix} a+b+c &-a+b & -a+c\\ a+b+c & 3b & -b+c \\ a+b+c & -c+b &3c \end{vmatrix}

\Rightarrow (a+b+c)\begin{vmatrix} 1 & -a+b &-a+c \\ 1 & 3b &-b+c \\ 1 & -c+b & 3c \end{vmatrix}

Again applying operations R_1\rightarrow R_1-R_3 and R_2\rightarrow R_2-R_3

\Rightarrow (a+b+c)\begin{vmatrix} 0 & -a+c & -a-2c\\ 0 & 2b+a & -b+a\\ 1 & -c+b & 3c \end{vmatrix}

On applying  R_2\rightarrow R_2-R_1, we get

\Rightarrow (a+b+c)\begin{vmatrix} 0 & -a+c & -a-2c\\ 0 & 2b+a & -b+a\\ 1 & -c+b & 3c \end{vmatrix}

Expanding about C_1, we get 

=(a+b+c)\begin{vmatrix} -a+c &-a-2c \\ 2b+a & -b+a \end{vmatrix}

\Rightarrow (a+b+c)\left [ (c-a)(a-b)+(a+2c)(2b+a) \right ]

=(a+b+c)\left [ ac-bc-a^2+ab+2ab+a^2 +4bc+2ac\right ]

=(a+b+c)\left [3ac+3bc+3ab\right ]

=(a+b+c)\times 3\left [ac+bc+ab\right ]

\Rightarrow 3(a+b+c)(ac+bc+ab)=RHS

Most Viewed Questions

Related Chapters

Preparation Products

Knockout NEET May 2024

Personalized AI Tutor and Adaptive Time Table, Self Study Material, Unlimited Mock Tests and Personalized Analysis Reports, 24x7 Doubt Chat Support,.

₹ 40000/-
Buy Now
Knockout NEET May 2025

Personalized AI Tutor and Adaptive Time Table, Self Study Material, Unlimited Mock Tests and Personalized Analysis Reports, 24x7 Doubt Chat Support,.

₹ 45000/-
Buy Now
NEET Foundation + Knockout NEET 2024

Personalized AI Tutor and Adaptive Time Table, Self Study Material, Unlimited Mock Tests and Personalized Analysis Reports, 24x7 Doubt Chat Support,.

₹ 54999/- ₹ 42499/-
Buy Now
NEET Foundation + Knockout NEET 2024 (Easy Installment)

Personalized AI Tutor and Adaptive Time Table, Self Study Material, Unlimited Mock Tests and Personalized Analysis Reports, 24x7 Doubt Chat Support,.

₹ 3999/-
Buy Now
NEET Foundation + Knockout NEET 2025 (Easy Installment)

Personalized AI Tutor and Adaptive Time Table, Self Study Material, Unlimited Mock Tests and Personalized Analysis Reports, 24x7 Doubt Chat Support,.

₹ 3999/-
Buy Now
Boost your Preparation for JEE Main with our Foundation Course
 
Exams
Articles
Questions