Get Answers to all your Questions

header-bg qa

Which term of the progression  20, 19 \frac{1}{4},18 \frac{1}{2}, 17 \frac{3}{4},...   is the first negative term ?

 

 

 

 
 
 
 
 

Answers (1)

Given : a=20

d=19\frac{1}{4}-20=\frac{-3}{4}

a_n=a+(n-1)d

First negative term \Rightarrow a_n<0

\Rightarrow 20+(n-1) \left ( \frac{-3}{4}\right )<0

\Rightarrow (n-1)\times \left ( \frac{3}{4}\right )>20

\Rightarrow (n-1) > \frac{20 \times 4}{3}

\Rightarrow n > \frac{20 \times 4}{3}+1

\Rightarrow n > \frac{80}{3}

\Rightarrow n > 27

Let  n=28\; \; (\because n>27)

a_{28}=20+(28-1)\left ( \frac{-3}{4} \right )                                          =20+ \frac{27 \times (-3)}{4}

        =20- \frac{81}{4}

        =- \frac{1}{4}

As a_{28} is negative hence the first negative term is \left ( -\frac{1}{4} \right )

 

Posted by

Ravindra Pindel

View full answer