Get Answers to all your Questions

header-bg qa

Explain solution for RD Sharma maths class 12 chapter 26 Direction Cosines and Direction Ratios exercise 26.1 question 14 maths textbook solution

Answers (1)

Answer: Angle between AB and CD is 0^{\circ}

Given: A(1,2,3), B(4,5,7), C(-4,3,-6) \& D(2,9,2). Find angle between AB and CD

Solution: we have A(1,2,3), B(4,5,7), C(-4,3,-6) \& D(2,9,2)

Direction ratio of AB=\left ( 4-1,5-2,7-3 \right )

              \left ( a_{1},b_{1},c_{1} \right )=\left ( 3,3,4 \right )

Direction ratio of CD=\left ( 2-\left ( -4 \right ),9-3,2-\left ( -6 \right ) \right )

              \left ( a_{2},b_{2},c_{2} \right )=\left ( 6,6,8 \right )

Let \theta be the angle between two lines whose direction cosines are \left ( a_{1},b_{1},c_{1} \right ) &  \left ( a_{2},b_{2},c_{2} \right )

              \begin{aligned} &\cos \theta=\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}} \\ &\cos \theta=\frac{(3)(6)+(3)(6)+(4)(8)}{\sqrt{3^{2}+(3)^{2}+(4)^{2}} \sqrt{6^{2}+6^{2}+8^{2}}} \\ &\cos \theta=\frac{18+18+32}{\sqrt{9+9+16} \sqrt{36+36+64}} \\ &\cos \theta=\frac{68}{\sqrt{34} \sqrt{136}} \\ &\cos \theta=\frac{68}{34 \times 2} \\ \end{aligned}

               \theta=\cos ^{-1}(1) \\

             \theta=0^{\circ}

Therefore, angle between AB and CD is \theta=0^{\circ}

Posted by

Infoexpert

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads