Get Answers to all your Questions

header-bg qa

Explain solution for RD Sharma maths class 12 chapter 26 Direction Cosines and Direction Ratios exercise 26.1 question 15 maths textbook solution

Answers (1)

Answer: \left(\pm \frac{1}{\sqrt{6}}, \pm \frac{1}{\sqrt{6}}, \pm \frac{2}{\sqrt{6}}\right) \text { and }\left(\pm \frac{1}{\sqrt{6}}, \pm \frac{2}{\sqrt{6}}, \pm \frac{1}{\sqrt{6}}\right)

Given: I+m+n=0 and 2Im+2In-mn=0 . Find direction cosine of line

Solution: we have

           I+m+n=0                                                    ………………. (1)

          I=-m-n                                                       ………………. (2)

          \begin{aligned} &\Rightarrow 2 \mid m+2 \ln -m n=0 \quad[1=-m-x] \\ &\Rightarrow 2(-m-n) m+2(-m-n) n-m n=0 \\ &\Rightarrow-2 m^{2}-2 m n-2 m n-2 n^{2}-m n=0 \\ &\Rightarrow 2 m^{2}+2 n^{2}+5 m n=0 \\ &\Rightarrow(m+2 n)(2 m+n)=0 \end{aligned}              

Given   m+2 n=0 \Rightarrow m=-2 n

                             Or

              2 \mathrm{~m}+\mathrm{n}=0 \Rightarrow \mathrm{m}=\frac{-\mathrm{n}}{2}

             If m=-2 n, then from (1), \mid=n

             If m=\frac{-n}{2}, then from (1), 1=\frac{-n}{2}

Thus, direction ratios are proportional to (n,-2 n, n) \text { and }\left(\frac{-n}{2}, \frac{-n}{2}, n\right)

              \Rightarrow(1,-2,1) \text { and }\left(-\frac{1}{2},-\frac{1}{2}, 1\right)

Now direction cosines are

              \left(\pm \frac{1}{\sqrt{6}}, \pm \frac{1}{\sqrt{6}}, \pm \frac{2}{\sqrt{6}}\right) \text { and }\left(\pm \frac{1}{\sqrt{6}}, \pm \frac{2}{\sqrt{6}}, \pm \frac{1}{\sqrt{6}}\right)

 

Posted by

Infoexpert

View full answer