Get Answers to all your Questions

header-bg qa

Explain solution for RD Sharma maths class 12 chapter 31 Mean and Variance of a Random Variable exercise multiple choice questions question 5 maths textbook solution

Answers (1)

Answer:

              \frac{3}{4}

Hint:

              To solve this we add all variables

Given:

              \begin{array}{ccccc} X & 0 & 1 & 2 & 3 \\ P(X) & k & 3 k & 3 k & k \end{array}

Solution:

\begin{aligned} As we know, \sum_{i=0}^{n} P\left(X_{i}\right)=1 \end{aligned}

\begin{aligned} &P(X=0)+P(X=1)+P(X=2)+P(X=3)=1 \\ &k+3 k+3 k+k=1 \\ &8 k=1 \\ &k=\frac{1}{8} \end{aligned}

As we know variance,  Var=\sum X^{2}P\left ( X \right )-\left ( \sum XP\left ( X \right ) \right )^{2}

 

   X                 P\left ( X \right )            XP\left ( X \right )             X^{2}P\left ( X \right )
    0                    \frac{1}{8}                   0                   0
    1                    \frac{3}{8}                   \frac{3}{8}                   \frac{3}{8}
   2                    \frac{3}{8}                   \frac{6}{8}                 \frac{12}{8}
   3                    \frac{1}{8}                   \frac{3}{8}                  \frac{9}{8}

 

\begin{aligned} &\begin{array}{l} \operatorname{Var}=\sum X^{2} P(X)-\left(\sum X P(X)\right)^{2} \\ \end{array} \\ \end{aligned}

\begin{aligned} &\begin{array}{l} =3-(1.5)^{2} \\ =3-\frac{9}{4} \end{array} \\ \end{aligned}

=\frac{12-9}{4}=\frac{3}{4}

Posted by

Infoexpert

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads