Get Answers to all your Questions

header-bg qa

Explain solution RD Sharma class 12 chapter 26 Direction Cosines and Direction Ratios exercise Fill in the blanks question 16 maths

Answers (1)

Final Answer:  \frac{\pi }{2}

Hint:

Use property \left[\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1\right]

Given:

\alpha+\beta=\frac{\pi}{2}

To Find: 

\gamma  (Angle between line and z axis)

Solution:

If a line makes α,β,γ, then

\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1            ......(i)

It is given that    \alpha+\beta=\frac{\pi}{2}

\alpha=\frac{\pi}{2}-\beta

Taking cosine both side

\begin{aligned} &\cos \alpha=\cos \left(\frac{\pi}{2}-\beta\right) \\\\ &\cos \alpha=\sin \beta \\\\ &\cos ^{2} \alpha=\sin ^{2} \beta \end{aligned}                        \left[\sin ^{2} x+\cos ^{2} x=1\right]

\begin{aligned} &\cos ^{2} \alpha=1-\cos ^{2} \beta \\\\ &\cos ^{2} \alpha+\cos ^{2} \beta=1 \end{aligned}                .......(ii)

Using the above equation (ii) in (i) we get

\begin{aligned} &\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1 \\\\ &1+\cos ^{2} x=1 \\\\ &\cos ^{2} x=0 \end{aligned}

\gamma=\frac{\pi}{2}\\\\ or \; \; 90^{\circ}
Therefore, the value of \gamma is \frac{\pi }{2}

 

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads