Get Answers to all your Questions

header-bg qa

Explain solution RD Sharma Class 12 Chapter 26 Direction Cosines and Direction Ratios Exercise Very Short Answer Question, question 19 Maths.

Answers (1)

Answer:

\frac{\pi}{3}

Hint:

\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1

Given:

a makes angle \frac{\pi}{3} with i,\frac{\pi}{4} with j and \theta with k

Solution:

Angle of a with i=\frac{\pi}{3}

\begin{aligned} &\Rightarrow(x \hat{\imath}+y \hat{\jmath}+z \hat{k}) \cdot(1 \hat{\imath}+0 \hat{\jmath}+0 \hat{k})=1 \times 1 \times \frac{1}{2}, \; \; \; \; \; \; \; \; \; \; \quad \text { since }|a|=1 \\ &\Rightarrow x \times 1=\frac{1}{2} \\ &\Rightarrow x=\frac{1}{2} \end{aligned}

Similarly,

\gamma =\frac{1}{\sqrt{2}}

let \gamma be the angle.

\begin{aligned} &\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1 \\ &\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2}+\cos ^{2} \gamma=1 \\ &\cos ^{2} \gamma=\frac{1}{4} \\ &\Rightarrow \cos \gamma=\pm \frac{1}{2} \\ &\gamma=\frac{\pi}{3} \end{aligned}

Posted by

infoexpert24

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads