Get Answers to all your Questions

header-bg qa

Need solution for RD Sharma maths class 12 chapter 26 Direction Cosines and Direction Ratios exercise Fill in the blanks question 11

Answers (1)

Final Answer:  -\left(\frac{-6}{7}, \frac{-2}{7}, \frac{-3}{7}\right) \text { or }\left(\frac{6}{7}, \frac{2}{7}, \frac{3}{7}\right)

Hint:

Use direction ratio of the line

Given:

Points (4, 3,-5) and (-2, 1,-8)

To Find: 

Direction cosine of line joining point

Solution:

Let point P(4, 3,-5)  and  Q (-2, 1,-8)  are joined to form line PQ
Direction Ratio of line PQ= Position vector of P- Position vector of  Q
Direction ratio of line PQ=[4-(-2), 3-1, -5-(-8)]

(a,b,c)=(6, 2, 3)

Direction Cosine of line PQ are:

l=\frac{a}{\sqrt{a^{2}+b^{2}+c^{2}}}, m=\frac{b}{\sqrt{a^{2}+b^{2}+c^{2}}}, n=\frac{c}{\sqrt{a^{2}+b^{2}+c^{2}}}

l=\frac{6}{\sqrt{6^{2}+2^{2}+3^{2}}}, m=\frac{2}{\sqrt{6^{2}+2^{2}+3^{2}}}, n=\frac{3}{\sqrt{6^{2}+2^{2}+3^{2}}}

\begin{aligned} &l=\frac{6}{\sqrt{49}}, m=\frac{2}{\sqrt{49}}, n=\frac{3}{\sqrt{49}} \\\\ &l=\pm \frac{6}{7}, m=\pm \frac{2}{7}, n=\pm \frac{3}{7} \end{aligned}

\begin{aligned} &(l, m, n)=\left(\frac{-6}{7},-\frac{2}{7}, \frac{-3}{7}\right) \\\\ &\text { or }\left(\frac{6}{7}, \frac{2}{7}, \frac{3}{7}\right) \end{aligned}

Therefore the direction cosine of the line segment are  \left(\frac{-6}{7}, \frac{-2}{7}, \frac{-3}{7}\right) \text { or }\left(\frac{6}{7}, \frac{2}{7}, \frac{3}{7}\right)

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads