Get Answers to all your Questions

header-bg qa

Please solve RD Sharma class 12 chapter 26 Direction Cosines and Direction Ratios exercise Fill in the blanks question 13 maths textbook solution

Answers (1)

Final Answer:  Point P=(-2, 4,-4)
Hint:

 Use direction ratio to find direction cosine

Given:
\overrightarrow{\mid O P} \mid=6\; and\\\\ (a, b, c)=(-1,2,-2)

To Find: 

Point P

Solution:

Direction cosine is related to direction ratio as :

l=\frac{a}{\sqrt{a^{2}+b^{2}+c^{2}}}, \frac{m}{\sqrt{a^{2}+b^{2}+c^{2}}} n=\frac{c}{\sqrt{a^{2}+b^{2}+c^{2}}}

l=\frac{-1}{\sqrt{(-1)^{2}+2^{2}+(-2)^{2}}}, m=\frac{2}{\sqrt{(-1)^{2}+2^{2}+(-2)^{2}}}, n=\frac{-2}{\sqrt{(-1)^{2}+2^{2}+(-2)^{2}}}

l=\frac{-1}{3}, m=\frac{2}{3}, n=\frac{-2}{3}

Now, \overrightarrow{O P}= Position vector of P - Position vector of O

\Rightarrow \overrightarrow{\mathrm{1}}=x i^{\wedge}+y \mathrm{l}^{\wedge}+z k^{\wedge}

where x,y,z are the coordinate of P
Now \overrightarrow{O P}=|\overrightarrow{O P}|\left(l \hat{\imath}+m \hat{j}+n k^{n}\right)

\begin{aligned} &\left(x i^{\wedge}+y i^{\wedge}+2 k^{\wedge}\right)=6\left(-\frac{1}{3} i^{\wedge}+\frac{2}{3} \hat{\jmath}-\frac{2}{3} k^{\wedge}\right) \\\\ &\left.\left(x i^{\wedge}+y\right)^{\wedge}+2 k^{\wedge}\right)=\left(-2 \hat{1}+4 \hat{\jmath}-4 k^{\wedge}\right) \end{aligned}

Comparing both

(x, y, z)=(-2,4,-4)

Therefore, the coordinate of point P are (-2,4,-4).

 

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads