Get Answers to all your Questions

header-bg qa

Please solve RD Sharma class 12 chapter 26 Direction Cosines and Direction Ratios exercise Fill in the blanks question 17 maths textbook solution

Answers (1)

Final Answer:  4

Hint:

Use the property \left[\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} y=1\right]

Given:

\alpha=\beta=\gamma

To Find: 

Number of equally inclined lines

Solution:

If α,β,γ are the angles made by line with axes, then

\begin{array}{ll} \Rightarrow \cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1 & {[\alpha=\beta=\gamma]} \end{array}

\begin{aligned} &\Rightarrow 3 \cos ^{2} \alpha=1 \\ &\Rightarrow \cos ^{2} \alpha=\frac{1}{3} \\ &\Rightarrow \cos \alpha=\cos \beta=\cos \gamma=\pm \frac{1}{\sqrt{3}} \end{aligned}

Possible direction cosine are \left(\pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}}\right)

Different set of direction cosine are

\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right),\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}\right),\left(\frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right) \text { and }\left(\frac{-1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)
 

Therefore, 4 lines are equally inclined to axes.

 

Posted by

infoexpert26

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads